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Abstract

Driven by the need for high integration density of integrated circuits and high per-
formance of single devices – especially with respect to operation frequency – the
dimensions of conventional electronic and optoelectronic devices have been subject
to downscaling since the early days of semiconductor technology. The enormous
progress in device technology allows for the fabrication of nanometer-scale struc-
tures which are of great interest especially for optoelectronic applications. Classical
and semi-classical approaches to the simulation of such structures partially or com-
pletely break down, on the one hand because the typical device dimensions get
comparable to the particle mean free path and on the other hand because atomistic
details of the device structure begins to play a fundamental role. Moreover, carrier
confinement is a typical effect in nanostructured devices leading to new physical
phenomena with vast application possibilities. Besides conventional semiconductor
technology molecular-based electronics has gained much attention for nanometric
eletronics. Transport in organic molecules and carbon nanotubes needs a strict
quantum mechanical treatment based on methods with atomistic resolution.

The consideration of quantum-mechanical effects in the simulation of nanoscale
devices is essential for a reliable description of structural, electronic and optical
properties and particle transport. Several approaches for such a detailed description
exist and are widely used. However, they are usually computationally very intensive
and therefore restricted to rather small system.

Normally, what we called nanoscale device up to here represents only the ac-
tive part of an electronic or optoelectronic device. It does not include surrounding
parts such as contact access regions, substrates or similar. However the overall
device behaviour can be influenced in a non-trivial way by these “non-active” de-
vice parts. Therefore a reliable, quantitative simulation has to take them into
account. The surroundings can usually be described using semi-classical models.
This situation can be handled only by a multiscale simulation, that is able to cou-
ple self-consistently the scale of semi-classical, continuous media approaches with
microscale quantum-mechanical simulations.

The goal of the TIBERCAD project is to provide a multiscale simulation envi-
ronment which meets the requirements for the simulation of emerging and future
devices. It is designed to capture all the important aspects of modern devices such
as strain, heat transport and electronic transport on different scales.



Riassunto

La richiesta di dispositivi elettronici di elevate prestazione e di circuiti ad alta inte-
grazione ha condotto ad una continua riduzione delle loro dimensioni sin dall’avvento
dell’era della tecnologia dei semiconduttori. Gli enormi progressi tecnologici con-
sentono attualmente di produrre strutture nanometriche di grande interesse in par-
ticolare per i dispositivi optoelettronici. Approcci classici e semi-classici alla simu-
lazione di tali strutture non sono adeguati per sistemi di questo tipo. Da un lato
le dimensioni tipiche dei dispositivi diventono comparabili con il cammino libero
medio dei portatori e dall’altro i dettagli della struttura atomica non sono più
trascurabili. Inoltre il confinamento dei portatori, che è un tipico effetto nei dis-
positivi nanometrici, può essere sfruttato in diversi modi. Oltre alle tecnologie
convenzionali basate su semiconduttori anche i dispositivi formati da molecole e
nanotubi a carbonio suscitano un elevato interesse. La descrizione del trasporto in
tali strutture richiede un trattamento quantistico che tenga conto della struttura
atomica.

Per ottenere una simulazione affidabile delle proprietà strutturali, elettroniche
ed optoelettroniche dei dispositivi nanometrici è essenziale considerare gli effetti
quantistici. Diversi approcci sono stati sviluppati a tale scopo, che però richiedono
risorse computazionali eccessive per il calcolo numerico e che pertanto possono
essere utilizzati solo per sistemi piccoli.

In genere le strutture nanometriche sono la parte attiva di un dispositivo che
comprende contatti elettrici, regioni di accesso, substrato e altro. Tuttavia il com-
portamento di tutto il dispositivo può essere influenzato in modo non banale da
queste parti, di cui una simulazione affidabile deve quindi tener conto e che pos-
sono essere descritte con modelli semi-classici. L’approccio corretto è quindi una
simulazione multiscala che sia in grado di accoppiare modelli semi-classici e modelli
quantistici o atomistici in modo autoconsistente.

Lo scopo del progetto TIBERCAD è di fornire un ambiente di simulazione mul-
tiscala che soddisfi le esigenze di una simulazione di dispositivi elettronici avanzati.
TIBERCAD è progettato per includere su scale diverse gli aspetti più importanti
riscontrati in dispositivi moderni come la tensione meccanica, il trasporto di parti-
celle e di calore.



Chapter 1

Introduction

1.1 Historical review

In 1960, one year after the first integrated circuits were demonstrated, the first
working MOSFET was realized at Bell Labs by Kahng and Atalla [51]. This was a
milestone in semiconductor technology as the MOSFET became the main ingredient
for computer technology. Due to the following enormous progress in semiconductor
technology, integrated circuits — especially microprocessors and memory — un-
derwent a tremendous increase in performance, for single transistor devices could
be made smaller, and more transistors could be integrated on one chip [62]. This
growth is described by Moore’s law, stated in 1965 [75] and illustrated in Fig. 1.1

Figure 1.1: Moore’s law: evolution trends for feature size (left) and tran-
sistors per chip (right) [62].

The construction of more and more powerful computers provided the oppor-
tunity for the implementation of numerical simulation methods of increasing com-
plexity, which in turn aided technological progress.

Modeling of semiconductor devices began in the ninteen-fifties after the formula-
tion of the basic semiconductor equations by Van Roosbroeck [65]. These equations,
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which are usually called drift-diffusion equations in the engineering and Van Roos-
broeck equations in the mathematical comunity, build a system of three coupled
partial differential equations: the poisson equation and continuity equations for
electrons and holes.

A major breakthrough for the use of the drift-diffusion equations for numerical
device simulation is due to Scharfetter and Gummel, which in 1969 proposed a
discretisation scheme that overcomes the main numerical problems connected to the
stiffness of the semiconductor equations [93]. A rigorous mathematical treatment of
the drift-diffusion equations started only in the nineteen-seventies and led to a good
understanding of the analytic and numerical properties of the single equations.

In 1966 the Monte Carlo method was applied the first time for the calculation
of transport in semiconductors and since then evolved to a powerful and reliable
simulation tool [47]. It allows a direct solution of the Boltzmann transport equa-
tion (BTE) without the need of a priori assumptions on the particle distribution
functions, which in contrary is required when expanding the BTE to get a simpler
model such as the drift-diffusion equations. Nevertheless the drift-diffusion model
has probably been the most important transport model for the simulation of semi-
conductor devices. Especially in industrial environments it has been the workhorse
for device development and optimisation. This is mainly due to the much lower
computational cost of the drift-diffusion model with respect to other approaches.

1.2 The need for multiscale simulation

The downscaling trend of conventional devices as shown in Fig. 1.1 leads to de-
vices with feature sizes in the nanometer scale, for which the assumptions of the
models based on a continuous media approximation break down. On the one hand,
quantum mechanical behaviour gets important and cannot be neglected anymore,
and on the other hand details of the atomistic structure can gain a high impact on
device performance. In particular, as devices get smaller bulk properties usually
get less important with respect to surface effects, e.g. at the contacts.

There are also emerging new devices where the active parts are based on nano-
structures such as nanowires, quantum dots, carbon nanotubes or even molecules.
The transport behaviour of such systems cannot be modeled without considering
the quantum mechanical properties of the carriers, and in many cases even the use
of approximations such as the envelope-function approximation (EFA) get ques-
tionable and atomistic approaches have to be used [79,26].

In a real system the aforementioned structures usually just represent the active
part of a device and are therefore not isolated but embedded in a larger environment
used e.g. as support or for contacting. As for practical applications the overall device
behaviour has to be known, a reliable simulation should consider not only the active
part itself, but also its environment.

Quantum mechanical and especially atomistic models require, however, very
high computational power and are therefore limited to rather small structures as
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molecules, carbon nanotubes or semiconductor structures with symmetries that re-
duce the dimension of the mathematical description (i.e. which needs a low number
of basis functions for the numerical treatment). As such, they can be used to calcu-
late the properties of the small active regions, but they definitely cannot include all
the surroundings. The only way to overcome this problem is to perform different
simulations on the same device, coupling them together selfconsistently.

Such an approach has been used for a long time in the simulation of MOSFETs
and HEMTs to include the effect of quantum confinement of the carriers in the
channel (see [104] and references therein). In this case, a stationary 1D Schrödinger-
like equation including the Hartree potential is solved on slices perpendicular to the
channel and the result is used to describe the carrier distribution along these slices,
whereas transport along the channel is described in a classical way.

The approach as described before is well known and widely used, but has a few
drawbacks. First, an “adiabatic” behaviour along the channel is assumed in the
sense, that the electro-chemical potential is assumed to be slowly varying. Second,
transport is calculated classically and therefore does include neither source-drain
tunneling nor gate tunneling, which can be both important in short-gate transistors.
Third, the approach is mainly useful for structures like MOSFETs or HEMTs or in
general when carrier transport in the plane of confinement is of interest. Finally,
the approach is usually based on the envelope function approximation which mostly
neglects atomic details of the underlying structure. When applied to very small
heterostructures this can be inadequate and a truly atomistic description of the
active part of the structure is desirable.

The way of selfconsistent coupling between atomistic and continuous models is
not evident and is therefore currently an important research topic. Undoubtedly the
coupling of nano- and microscale simulations in form of multiscale simulations will
in future be the preferred approach for the study of electronic and optoelectronic
devices. In fact, the multiscale simulation approach is already an established and
indispensable tool in fields such as computational materials science (e.g. [41]) or
biotechnology and drug design/drug release modeling (e.g. [2]).

Fig. 1.2 shows the different scales that are generally involved in the simulation
of electronic and optoelectronic devices. On the highest level, which corresponds
to the biggest length scale, a merely architectural point of view is adopted. This is
the world of circuit simulation where compact models, simple mathematical models
or equivalent circuits built from lumped elements are used for the description of
single devices. The model parameters are extracted either from measurements or
from lower scale physical device simulations.

The next scale is the scale of microstructures, that is single electronic devices
(also MEMS etc. in other engineering fields) which can be characterized based
on continuous media approaches, i.e. which do not need a deeper knowledge of
atomic details of the structure. This is equivalent to saying that device behaviour
is governed by bulk effects rather than surface or interface properties. Examples are
hydrodynamic and drift-diffusion models, elasticity theory and fluidodynamics. On
this scale quantum mechanical effects do not enter explicitly into the description,
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Figure 1.2: The hierarchy of scales important for device simulation.

but they can be present implicitly in model parameters, e.g. in the band parameters
of semiconductors.

In the sub-micrometer scale approaches can be used that consider the atomistic
structure rather than assuming a continuous media, but still use classical models
to describe the properties of the system. An example are valence force methods,
where the interatomic forces are parametrized in a classical way [53].

Arriving at the nanometer scale one finally enters the reign of quantum mechan-
ics, where the device behaviour is controlled to a great deal or entirely by quantum
effects. Often, approaches such as envelope function or the related effective mass
approximations cannot be used or are at least questionable. This is the case espe-
cially when dealing with molecules, carbon nanotubes or atomic clusters, but also
for nanostructured devices, when the exact atomic structure of e.g. interfaces or
surfaces begins to play an important role. The behaviour in the latter case tends to
be dominated by surface and interface properties (not least by the interface between
contact and active region) rather than by bulk properties. The quantum mechani-
cal approaches can be divided into empirical, semi-empirical and ab initio methods,
where the computational burden usually grows quickly when moving towards first
principles methods.

The device simulators that are mostly used at present emerged during the
ninteen-eighties (Silvaco [98]) and ninteen-nineties (DESSIS of ISE-TCAD, acquired
by Synopsis and now called Sentaurus Device [101]) and are based on a continuous
media simulation approach. Although they incorporate quantum mechanical mod-
els in form of quantum-corrections in the semi-classical transport equations and
for selfconsistent Schrödinger-Poisson solvers, they do not treat them on an atom-
istic level, which is clearly a limitation for the simulation of emerging and future
nanoelectronic devices.
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The TIBERCAD project [85, 7, 9] was launched to provide a simulation envi-
ronment that adopts the new approach of multiscale simulations to overcome the
limitations of the established classic device simulation framework.

It should be noted that a multiscale simulation is usually at the same time also
a multiphysics simulation. This is due to the evident fact, that the descriptions
adopted on different scales are normally connected to different physical oder math-
ematical models. On the contrary, multiphysics simulations are not intrinsically
connected to multiscale simulations but nevertheless of crucial importance for a
reliable simulation of modern electronic and optoelectronic devices. For this reason
TIBERCAD is designed to be a multiphysics and multiscale simulation tool, without
a priori preferring one aspect over the other, although the multiscale aspect is the
more important one from a scientific point of view, especially for future devices.

1.3 The multiscale simulation approach in TIBERCAD

In this section we illustrate the multiscale (and multiphysics) simulation approach
of TIBERCAD. The multiscale procedure is visualized schematically in Fig. 1.3. The

Figure 1.3: Schematic flowchart for a multiscale simulation.

fact of being a multiscale simulation is hidden from the user as far as possible. The
user has to define geometry, materials and their physical properties (if not taken
from a database) along with appropriate boundary conditions. From this informa-
tion the simulator constructs the domain to be simulated on different domains and
prepares all needed data structures. Normally, the user defined boundary condi-
tions refer to the classical or macro-domain, whereas boundary conditions between
macro-domain and quantum mechanical or atomistic domains, in the figure denoted
by micro-domain, are constructed internally.

The solutions of the different macro-domain calculations – assuming the macro-
domain problem to be itself a multiphysics problem – represent mean field data
such as the (Hartree-) potential, the elastic strain from local deformation or the
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local lattice temperature. These data are used in the micro-domain problem for
the calculation of the Hamiltonian. The results of the micro-domain calculations
in turn represent boundary conditions on the macro-domain (e.g. particle currents)
or input data to the corresponding equations such as particle densities or optical
responses. The simulations on the two domains have to be solved iteratively to
attain a self-consistent global solution of the multiscale/multiphysics problem.

As different models communicate by means of boundary conditions or by point-
wise data inside the simulation domain, they have to be able to exchange data. This
usually involves an interpolation because the different models are not necessarily
solved on the same grid. TIBERCAD implements this aspect in a particular way.
The meshes for the different models are all derived from one single parent mesh
by selective refinement. In this way groups of elements used in different models
will have a common parent element, i.e. they belong to the same element family.
This allows to find data from another model in a given element in an efficient way.
Fig. 1.4 illustrates this approach graphically.

o o

o

parent mesh

model A model B

Figure 1.4: Data interpolation between different meshes. Model A can
find data of model B in a certain point of an element as it knows that the
coresponding element in model B has to be a child of the common parent
element.

Whenever possible, the numerical implementations in TIBERCAD are based on
the finite element method (FEM). FEM has been widely used especially in structural
mechanics, but in the last decades it has been applied to many other engineering
fields. Today it is often the method of choice for the numerical treatment of com-
putational problems as it is able to treat complex geometries rather easily and as it
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has a sound mathematical basis which allows for well founded approximation and
convergence analysis.

Treating all models in the framework of FEM provides a clean and coherent
way of handling complex multiphysical problems. As the solutions are expanded
in basis functions that are well defined on the whole simulation domain, interpo-
lation of data between mesh points is a well-defined operation. For this reason
data exchange between models can be done in a transparent way, without intro-
ducing non-quantifiable or obscure sources of errors. Moreover, the possibility of
quantifying approximation errors allows for efficent adaptive mesh refinement.



Chapter 2

Physical Models

In this chapter the different physical models implemented in TIBERCAD are de-
scribed. First, the classical and semi-classical continuum mechanical approaches
for the calculation of strain (2.1), particle transport (2.2) and heat transport (2.3),
and finally the quantum mechanical models (2.4) are presented. The latter are sub-
divided into envelope function approximations and atomistic methods. All models
that are based on partial differential equations are discretised using the finite el-
ement method (FEM) which leads to a consistent description of a device across
the different models. The numerical implementation of the drift-diffusion equations
derived in sec. 2.2 will be treated in more detail in chapter 3 as this represents the
main part of this work.

2.1 Strain and related phenomena

Mechanical strain is present in systems in which external or internal forces lead
to a mechanical deformation, i.e. to a change of the interatomic distances of the
constituent materials. This is the case in a homogeneous material under an external
pressure, but also in a lattice mismatched heterostructure, where the substrate
material imposes its lattice constant to the material grown on top of it.

Strain got an important issue in semiconductor devices due to the tremendous
progress in semiconductor technology, especially growth technology. This seems
paradoxical, and the reason is that only thanks to very high quality growing tech-
niques it is possible to grow strained heterostructures that can be used to build de-
vices with. Consequently one began to take advantage of the properties of strained
semiconductor devices [87], and therefore the treatment of strain in the simulation
of these systems is of crucial importance.

Strain can be calculated either atomistically or using continuum mechanics. Us-
ing an atomistic approach we would have to write down the Hamiltonian H of the
system and minimizing the total energy we could find the equilibrium positions Rk

of the ions. Doing this without too much simplifications is computationally very ex-
pensive and feasable only for systems with a small number of atoms, e.g. molecules.
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Systems with millions of atoms can be treated by using empirical approaches as e.g.
valence force methods where the inter-ionic forces are parametrised and the other
terms in the Hamiltonian are discarded [53]. This is still a computationally heavy
task and applicable only to nanostructures.

For the study of “big”micrometer scale structures a continuous media approach
has to be used. The implementation in TIBERCAD is based on elasticity theory,
assuming cristallographically perfect heterointerfaces (coherent growth) and defect-
free structures [84,83,82,60].1

2.1.1 Elasticity theory of heterostructures

Let us assume a structure that is deformed due to some force such that each point
r moves to a new point r′. The displacement u of r is given by

u = r′ − r, or ui = xi
′ − xi (2.1)

and completely characterises the deformation of the system. Generally the defor-
mation is not homogeneous and therefore the displacement is position dependent:
u = u(r). The distance between two infinitesimally adjacent points in the deformed
system reads

dl′2 = (dr + du)2 (2.2)

du can be written as (in components) dui = (∂ui/∂xk)dxk and with this the above
distance gets

dl′2 = dl2 + 2
∂ui

∂xk
dxi dxk +

∂ul

∂xk

∂ul

∂xi
dxk dxi

= dl2 +
(
∂ui

∂xk
+
∂uk

∂xi

)
dxi dxk +

∂ul

∂xk

∂ul

∂xi
dxi dxk (2.3)

where dl is the distance before the deformation.2 Eq. (2.3) can be rewritten as

dl′2 = dl2 + 2εikdxidxk (2.4)

The symmetric tensor εik in the last expression is called strain tensor. For small
deformations where we can neglect terms quadratic in ∂ui/∂xk it is given by

εik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
(2.5)

Its diagonal components describe stretching or shrinking, and the off-diagonal ones
are connected to shear deformations. The trace of ε gives the relative volumic
change due to the deformation.

1The software implementation of this model was done by Dr. M. Povolotskyi.
2Here and in the following we use the Einstein summing convention (without differentiating co-

and contravariant indices), i.e. we sum over indices appearing twice in the same expression.
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In a strained structure internal forces try to restore locally the interatomic
distances to the equilibrium values. These forces can be written as divergence of a
second-rank tensor σik:

Fi =
∂σik

∂xk
(2.6)

With this the i-th component of the force F acting on a small volume V can be
written as ∫

V
Fi dV =

∫
V

∂σik

∂xk
dV =

∫
∂V
σik dsk (2.7)

where sk are the components of the surface element. σik dsk is therefore the force
acting on the surface element dsk. The tensor σik is called stress tensor. In equi-
librium the internal forces in each small volume V have to compensate such that
Fi = 0, i.e.

∂σik

∂xk
= 0 (2.8)

The elastic energy of a deformed system is given by [60]

E =
1
2

∫
V
σikεik dV (2.9)

The equilibrium state can be found by minimizing E which is equivalent to (2.8).
As we are interested in small deformations we can use Hooke’s law which linearly

relates strain to stress:
σik = Ciklmεlm (2.10)

Ciklm is called elasticity tensor. It is symmetric in ik and lm and with respect to
the interchange of the two index pairs. Therefore it can have at most 21 different
components, called elasticity moduli. The number of independent components is
given by the symmetry of the crystal. The for semiconductor devices most im-
portant cristalline structures have cubic or hexagonal symmetry. In cubic systems
there are only three different elasticity moduli, whereas in hexagonal systems there
are five of them.

The system of equations to be solved to get the deformation and strain of
semiconductor structures finally reads

∂

∂xk
(Ciklmεlm) =

1
2
∂

∂xk

[
Ciklm

(
∂ul

∂xm
+
∂um

∂xl

)]
= fi (2.11)

where fi is an externally applied mechanical force.
For the numerical calculation we proceed in the following way [82]:

1. Define a simulation mesh covering the simulation domain and its coordinate
system. If the axes of the simulation system do not coincide with the cristallo-
graphic axes of the constituent materials, calculate the corresponding rotation
matrices.
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2. Define a reference lattice. The lattice of one of the constituent materials,
usually the substrate material, is used. We can then define a lattice-matching
strain ε0ij which is caused by the deformation of the unit cells of the unstrained
materials needed to match the reference lattice.

In order to define the reference lattice constants, a conventional unit cell of a
minimal size has to be chosen with its faces parallel to the heterointerfaces.
Then the reference lattice constants are the lengths of translation vectors
of this conventional cell. In the case of hexagonal crystals grown in [0001]-
direction and with the axes chosen as x‖[101̄0], y‖[1̄21̄0], z‖[0001], the non-
zero components of ε0ij become: ε0xx = ε0yy = (a0 − a)/a, ε0zz = (c0 − c)/c,
where a and c are the lattice constants along the [101̄0] and [0001] directions,
respectively. In a zincblende system grown along [001] we get ε0ij = δij(a0 −
a)/a.

3. The total strain tensor is now given by

εij(r) = ε̃ij(r) + ε0ij(r) (2.12)

where ε̃ij(r) is the strain according to eq. (2.5) due to the displacement u(r)
with respect to the reference lattice.

When applying the strain ε0ij(r) to the system, all heterointerfaces will be per-
fectly matched, but the structure will not be in equilibrium. The equilibrium can
be found by minimizing the elastic energy, maintaining the interface matching.

Following the procedure as delineated before, we rewrite eq. (2.11) in the fol-
lowing way, and using the symmetry Cijkl = Cijlk we finally get

∂

∂xi
Cijkl(r)

∂uk(r)
∂xl

= − ∂

∂xi
Cijkl(r)ε0ij(r) + fi (2.13)

which has to be solved under appropriate boundary conditions.
In order to get the equilibrium shape of a strained structure, the deformation

u(r) has to be applied to the discretization mesh, and then the strain in the de-
formed system has to be recalculated, leading to a new deformation. After a few
iterations the final shape can be obtained. The algorithm is illustrated in Fig. 2.1.

Fig. 2.2 shows an example of the application of elasticity theory to a freestanding
GaN/AlGaN heterostructure as shown in part (a) of the figure. Due to the fact
that AlGaN has a smaller lattice constant than GaN, the structure deforms such
as to build a sort of bowl as shown in (b).

2.1.2 Strain related effects

Strain has important effects on the electrical and optical behaviour of semiconductor
devices.

On the one hand it is clear that strain provokes a change of the band structure
due to the deformation of the primitive cells. In particular this results in a splitting
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Figure 2.1: Iterative procedure for the calculation of the deformed equilib-
rium shape.

Figure 2.2: Deformed free standing GaN/AlGaN heterostructure. The
structure is indicated schematically in (a), (b) shows the convex final shape.

of the degenerate hole bands, in a change of the band extrema and therefore of
the band gap and in changes of the quasi-particle masses. These together locally
change the effective density of states and result in space dependent band gaps.

On the other hand strain can change the charge distribution inside the con-
ventional cell and lead to a macroscopic electric polarization P . This is called
piezoelectric effect.

The band structure effects will be described in section 2.4. Only the piezoelectric
effect shall be treated here.

The electric displacement D in a piezoelectric crystal can be written in general
as [59]

Di = D
(0)
i + κikEk + eiklεkl (2.14)

To avoid confusion with the strain tensor we denote the permittivity tensor with
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the symbol κik. The term D
(0)
i represents a spontaneous electric polarization. It is

called pyroelectric polarization, and we will identify it with the symbol P py. This
effect can only be found in crystals with certain symmetries as the properties of
the crystal have to remain unchanged under the symmetry transformation. In par-
ticular, as the polarization vector is a polar vector, it changes sign under a parity
transformation P: P(P ) = −P . Therefore only crystals which break parity symme-
try can have a spontaneous electric polarization. This is the case for semiconductors
with wurtzite crystal structure, e.g. nitride based materials (GaN, AlN, InN and
their alloys). The pyropolarization in this case points along the symmetry axis
c as illustrated in Fig. 2.3. The pyroelectric polarization is strongly temperature

cP

a

c

Figure 2.3: Pyropolarization in a hexagonal lattice.

dependent.
The second term on the right hand side of eq. (2.14) is the usual expression

for the displacement in function of the electric field, with the difference that the
permittivity is written as a tensor as it can be anisotropic.

The third term is called piezoelectric polarization P pz. The third-rank tensor
eikl is the piezoelectric tensor. It is symmetric in the index pair kl and its compo-
nents depend on the symmetry of the crystal. In a cubic crystal e.g. it has only
one independent non-zero component associated with the off-diagonal components
of the strain (representing shear deformation), and the piezoelectric polarization
can be written as

P pz = 2exyz

εyz

εxz

εxy

 (2.15)

In a material with the crystal structure of wurtzite eikl has the three independent
non-zero components, denoted by e15, e31 and e33 and the piezoeletric polarization
reads (using the Voigt-notation for the indices, which contracts the index pair kl
into a single index [42])

P pz =

 2e15εxz

2e15εyz

e31εxx + e31εyy + e33εzz

 (2.16)
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2.2 Semiclassical particle transport

Semiclassical particle transport is usually based on the Boltzmann transport equa-
tion (BTE), formulated first by Boltzmann in 1872:[

∂

∂t
+ v · ∇r +

1
m

Feff · ∇v

]
f(r,v, t) =

(
∂f

∂t

)
coll

(2.17)

where v means the particle velocity, Feff = mdv/dt is an effective force acting on
the particles, m is the effective mass of the particles and the term on the right hand
side of the equation is the collison integral which describes the scattering between
different states. The effective force can also be written as gradient of an effective
potential Feff = −∇rUeff . f(r,v, t) represents the particle density in phase space
such that a volume element d3r d3v at (r,v) contains f(r,v, t) d3r d3v particles.
The forces responsible for particle scattering shall be assumed to be short ranged
and the scattering events to take place on a short time scale, in compatibility with
the picture of a classical “collision”.

Note that the left hand side of eq. (2.17) is just the expansion of df(r,v, t)/dt
(without the collision term). This rate of change of the particle density can be
interpreted as convection due to the the effective force Feff so that (2.17) can be
seen as a balance between the rates of change due to convection and collisions [66]:(

∂f

∂t

)
conv

=
(
∂f

∂t

)
coll

(2.18)

The Boltzmann transport equation can be derived either by a phenomenological
approach [5,66], or by a Green’s function description of transport [50].

An expression for the collision integral can be found as follows (assuming par-
ticles following the Fermi-Dirac statistics). Let P (r,v′ → v, t) denote the rate of
scattering of a particle at position r from a velocity v′ to the velocity v. We assume
this rate to be proportional to the occupation of the initial state f(r,v′, t) and to
the number of available states 1− f(r,v, t):

P (r,v′ → v, t) = S(r,v′,v)f(r,v′, t)[1− f(r,v, t)] (2.19)

where S(r,v′,v) is the scattering rate from (x,v′) to (x,v). The total inscattering
for a state (x,v, t) is then the integral of the above equation over all possible initial
states (x,v′). Analogously a total outscattering rate can be calculated and we
finally get for the collision integral(

∂f

∂t

)
coll

=
∫ [

P (r,v′ → v, t)− P (r,v → v′, t)
]

dv′

=
∫ [

S(r,v′,v)f ′(1− f)− S(r,v,v′)f(1− f ′)
]

dv′ (2.20)

where we abbreviated f = f(r,v, t) and f ′ = f(r,v′, t). The scattering rates S
have to be calculated quantum mechanically for each scattering mechanism.
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Several interesting (and measurable) microscopic quantities can be calculated
from the moments

∫
vmf dv of the distribution function f(r,v, t). The real space

carrier density n(r, t) is given by the zeroth moment

n(r, t) =
∫
f(r,v, t) d3v (2.21)

whereas the particle flux j(r, t) is found from the first moment

j(r, t) =
∫

vf(r,v, t) d3v (2.22)

The moments of even order m can be considered generalized densities (particles,
energy etc.) and the ones of odd order m+1 the corresponding fluxes. Calculating
the moments of the Boltzmann equation itself, one can get conservation equations
for the corresponding moments of the distribution function. This will be shown in
section 2.2.1.

The validity of the Boltzmann equation is connected to the following assump-
tions:

• All scattering events are assumed to be local and instantaneous.

• Carrier-carrier interaction can be neglected.

• The potential Ueff (r) is assumed to vary slowly in r with respect to the
extension of a particle wave packet.

Under certain assumptions the collision integral (2.20) can be simplified. In
the low density approximation we can use assume that f � 1 and therefore the
collision integral becomes a linear operator. In the relaxation time approximation
we presume a small driving force −∇Ueff such that the distribution f can be
linearised as f = feq + f (1), where feq denotes the equilibrium distribution. Then
we can find for the collison integral(

∂f

∂t

)
coll

= −f − feq

τ(r,v)
(2.23)

with the relaxation time given by

τ(r,v)−1 =
∫
S(r,v,v′) dv′ (2.24)

For further simplification τ(r,v) can be substituted by a constant τ .
To study transport of quasi-particles in a semiconductor, e.g. electrons or holes,

the quantum effects of the crystal lattice have to be included in the Boltzmann
equation. In this case we write the distribution f in terms of the crystal momentum
k, f = f(r,k, t), and the Boltzmann equation gets[

∂

∂t
+ v(k) · ∇r +

1
~
Feff · ∇k

]
f(r,k, t) =

(
∂f

∂t

)
coll

(2.25)
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where v(k) = dr/dt denotes the group velocity of the particles and the change of
momentum is given by ~dk/dt = Feff . Using the dispersion relation Eeff (r,k) for
the particle under consideration we can write

dk/dt = Feff = −1
~
∇rEeff (r,k) (2.26a)

dr/dt = v(k) =
1
~
∇kEeff (r,k) (2.26b)

Some remarks regarding the effective energies Ueff (or Eeff ) used in the above
expressions are appropriate at this point. Although not stated explicitly, it is
clear that the Boltzmann equation is a single particle equation, and as such it
does not inherently take into account particle interactions (apart from short ranged
collisions). Let us consider a system of charged particles at low density in an
external potential Uext, assuming no collisions. If we would take Ueff = Uext in
this case, we would completely neglect the Coulomb interaction, which is a long
ranged force. In first order the latter can be accounted for by including in Ueff (r)
the potential generated by all other particles located in positions r′. Given the real
space particle density n(r) from eq. (2.21) this means

Ueff (r) = Uext(r) +
∫
Up−p(r, r′)n(r′) dr′ (2.27)

where Up−p(r, r′) is the potential generated at r by a point source located at r′.
This phenomenological argumentation is compatible with the Hartree approxima-
tion in quantum mechanics, and the same result can also be obtained when de-
riving the Boltzmann equation starting from the Liouville equation and using the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [66]. The important
point here to keep in mind is that for charged particles the Boltzmann and Poisson
equation intrinsically belong together.

Several approaches exist to solve the integro-differential equation (2.17) (or,
equivalently, (2.25)). The most successful direct solution method is based on the
Monte Carlo method [47]. Simulations based on this method however are very time
consuming. Faster methods can be constructed by formulating kinetic equations for
some mean values of the BTE, reducing thereby the number of dependent variables
and resulting in a set of pure partial differential equations. The procedure for this
approach is drafted in the next section.

2.2.1 The drift-diffusion model

To derive a simpler, computationally less demanding transport model from the
BTE described in the last section, usually the method of moments [66, 96, 94] is
used, although other methods are described in literature [66]. Here we shall follow
the derivation exposed in Ref. [94].
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The basic idea of the method of moments is to derive kinetic equations for the
mean values with respect to the particle velocity of a certain function Φ(v):

〈Φ〉 =
∫

Φf(r,v, t) dv∫
f(r,v, t) dv

=
1

n(r, t)

∫
Φf(r,v, t) dv (2.28)

where we used eq. (2.21). Obviously 〈Φ〉 will be a function of r and t.
Consider now the partial derivative of the product of 〈Φ〉 and n(r, t) with respect

to the time

∂

∂t
(n〈Φ〉) =

∂

∂t

∫
Φ(v)f(r,v, t) dv =

∫
Φ(v)

∂

∂t
f(r,v, t) dv (2.29)

The partial derivative of the distribution function can be replaced using the Boltz-
mann equation (2.17), leading to

∂

∂t
(n〈Φ〉) =

∫
Φ
[
−v · ∇rf −

F

m
· ∇vf +

(
∂f

∂t

)
coll

]
dv

= −∇r

∫
Φvf dv − F

m

∫
Φ∇vf dv +

(
∂

∂t

∫
Φf dv

)
coll

(2.30)

To write this last equation in terms of mean values we have to eliminate all deriva-
tives of f inside the integrals by partial integration (using lim|v|→∞ f = 0). The
resulting expression reads

∂

∂t
(n〈Φ〉) +∇r(n〈vΦ〉)− n

F

m
〈∇vΦ〉 =

(
∂

∂t
n〈Φ〉

)
coll

(2.31)

The last equation reads in symbolical form

∂

∂t
(n〈Φ〉) +∇rj〈Φ〉 − nF〈Φ〉 =

(
∂

∂t
n〈Φ〉

)
coll

(2.32)

allowing the interpretation as a conservation law for the generalized density n〈Φ〉.
j〈Φ〉 = n〈vΦ〉 is the associated generalized flux and F〈Φ〉 = F 〈∇vΦ〉/m a generalized
driving force.

For the special choice Φ(v) = vm the equation (2.31) corresponds to the mo-
ment of order m of the Boltzmann equation, and n〈Φ〉 is the m-th moment of the
distribution function f . Note that the moment of order m in this case is a tensor
of rank m, which can easily be seen using index notation:

Φ(m)
i1i2...im

(v) = vi1vi2 · · · vim (2.33)

The set of equations for the moments m = 1 · · ·∞ build an infinite hierarchy of
conservation laws, where the equation for the m-th moment depends on the moment
of order m + 1. The lowest order moments are the particle density (m = 0), the
particle flux (m = 1), the energy density (m = 2) and the energy flux (m = 3). In
the following the expressions for the first few moments will be explicitly calculated,
writing Φ(0) = 1, Φ(1) = v, Φ(2) = v ⊗ v (⊗ being the tensor product).
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m = 0

The zeroth moment is given by n〈Φ(0)〉 = n〈v0〉 = n. The corresponding flux
(which turns out to be the first moment) and driving force are j〈Φ(0)〉 = n〈Φ(1)〉 =
n〈v〉 =: jn and F〈Φ〉 = 0, respectively. Equation (2.32) leads to the well known
continuity equation for the particle density n

∂n

∂t
+∇rjn =

(
∂n

∂t

)
coll

(2.34)

jn has to be calculated from the first moment of the BTE.

m = 1

The first moment is defined by n〈Φ(1)〉 = n〈v〉 =: jn. The corresponding flux
(connected to the second moment) and the driving force are j〈Φ(1)〉 = n〈Φ(2)〉 =
n〈v ⊗ v〉 and F〈Φ〉 = F /m, respectively. The velocity can be written as the sum of
its mean value and the deviation from it, i.e.

v = 〈v〉+ δv (2.35)

with 〈δv〉 = 0. 〈v〉 can be interpreted as mean drift velocity and δv as its statistical
(thermal) fluctuation. Substituting we get

j〈Φ(1)〉 = n〈v ⊗ v〉 = n
〈
(〈v〉+ δv)⊗ (〈v〉+ δv)

〉
= n〈v〉 ⊗ 〈v〉+ n〈δv ⊗ δv〉

(2.36)

The divergence of j can be written in the following form

∇rj〈Φ〉 = 〈v〉∇r(n〈v〉) + (n〈v〉 · ∇r)〈v〉+∇r(n〈δv ⊗ δv〉) (2.37)

To get the last equation we used

∇r(nv ⊗ v)︸ ︷︷ ︸
∂j(nvivj) = (nvj∂j)vi + vi∂j(nvj)︷ ︸︸ ︷

(nv · ∇r)v + v∇r · (nv)

(2.38)

With eq. (2.37) the first moment of the boltzmann equation becomes

∂

∂t
jn + 〈v〉∇r · jn + (jn · ∇r)〈v〉+∇r(n〈δv ⊗ δv〉)− n

F

m
=
(
∂jn

∂t

)
coll

(2.39)

and represents the conservation law for the particle flux. The fourth term on the
left hand side is abbreviated by defining a mean particle temperature tensor T from
the mean kinetic energy of the fluctuation δv

1
2
kBT =

m

2
〈δv ⊗ δv〉 (2.40)
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such that
∇r(n〈δv ⊗ δv〉) =

1
m
∇r · (nkBT ) (2.41)

We truncate the hierarchy at this point as we will not introduce the hydro-
dynamic and energy balance models but rather derive the drift-diffusion model
directly. Before doing this, we have to find expressions for the collision terms in
eqns. (2.34) and (2.39). In general they do not depend in a simple way on the
moments, but making an ansatz for the distribution function and thus fixing its
dependence on velocity we could find expressions for them [66]. Here we use a more
phenomenological ansatz [94,20]. For the general collision term we write(

∂

∂t
n〈Φ〉

)
coll

=
(
n
∂〈Φ〉
∂t

)
coll

+ 〈Φ〉
(
∂n

∂t

)
coll

(2.42)

The first term represents intra-band processes that do not change the particle den-
sity, whereas the second term describes inter-band collisions that change the number
of particles in a band. We replace the rate of change of the particle density by the
difference of some generation and recombination rates, i.e.(

∂n

∂t

)
coll

= G−R (2.43)

For the intra-band term we use a relaxation time approximation and write(
n
∂〈Φ〉
∂t

)
coll

= −n
〈Φ〉 − 〈Φ〉eq

τ〈Φ〉
(2.44)

The relaxation time τ〈Φ〉 describes how fast a system in non-equilibrium returns to
its equilibrium state 〈Φ〉eq. Using these expressions we get for the collision terms
of the first two moments(

∂

∂t
n〈Φ(0)〉

)
coll

= G−R, as 〈Φ(0)〉 = 1 (2.45)

and (
∂

∂t
n〈Φ(1)〉

)
coll

= −n〈v〉
τ

+ 〈v〉(G−R), as 〈v〉eq = 0 (2.46)

τ in the last equation is called momentum relaxation time.
In order to get a closed transport model based on the particle continuity equation

an expression for the particle flux has to be found. For this purpose we first expand
∂jn/∂t to get

∂jn

∂t
=

∂

∂t
(n〈v〉) = n

∂〈v〉
∂t

+
∂n

∂t
〈v〉 (2.47)

Then we substitute (2.34) into (2.39) and use (2.45) and (2.46). This leads to

n
∂〈v〉
∂t

+ (jn · ∇r)〈v〉+
1
m
∇r · (nkBT )− n

F

m
= −n〈v〉

τ
(2.48)
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where τ is the momentum relaxation time introduced in (2.46).
The third term on the left hand side of eq. (2.48) containing the particle tem-

perature tensor T should be computed from the second moment of the Boltzmann
equation. As we truncated after the first moment it has to be approximated in some
way. First, we assume the particles to be in local thermal equilibrium with their
environment. That is, we do not consider hot carriers. It can then be assumeed
that there is no correlation between different directions of the thermal motion and
that the thermal energy is equally distributed on all directions (theorem of equipar-
tition [57]). Therefore we write

Tij =
m

kB
〈δviδvj〉 = TLδij (2.49)

where TL stands for the environmental temperature (the lattice temperature in a
crystal) and δij is the usual Kronecker delta.

With the above expression for the particle temperature and writing the mean
velocity 〈v〉 in terms of the particle flux, we get from eq. (2.48)

jn+nτ
∂

∂t

(
jn

n

)
+τ(jn ·∇r)

(
jn

n

)
= −kBTLτ

m
∇rn−n

τ

m
∇r(kBTL)+nτ

F

m
(2.50)

To get an explicit and simple formula for the particle flux, we discard the second
and third term on the left hand side, assuming them to be small compared to the
flux itself. This approximation has the following physical interpretation:

• τ

∣∣∣∣∂〈v〉∂t

∣∣∣∣� |〈v〉| : this means that the momentum relaxation has to be faster

than the variation of 〈v〉 in time induced by extrinsic perturbations.

• τ |∇r〈v〉| � 1 : this means that the spatial variation of 〈v〉 has to be small
compared to the scattering rate.

Whereas the first point isn’t too restrictive (the momentum relaxation time is typi-
cally in the order of 10−12 to 10−13 s), the second one can be violated in very small
devices like short-channel MOSFETs.

The final form of the drift-diffusion model is obtained by defining a mobility µ
and a diffusion coefficient D by

µ =
eτ

m
, D = kBTL

τ

m
(2.51)

and by writing the driving force F as gradient of a potential U , F = −∇rU .
Note that mobility and diffusion coefficients are connected by the Einstein relation
D = (kBTL/e)µ. The final formulation of the drift-diffusion model thus reads

∂n

∂t
+∇rjn = G−R (2.52a)

jn = −D∇rn− µ∇r(U/e+ kBTL/e) (2.52b)

The first equation is the familiar continuity equation for the particle density. The
second equation is called constitutive equation. In the case of charged particles the
above system has to be completed by the Poisson equation.
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2.2.1.1 Electron and hole transport

For the description of electron and hole transport in a semiconductor in the drift-
diffusion approximation we start from a set of two semi-classical Boltzmann equa-
tions as given in eq. (2.25):[

∂

∂t
+ vn · ∇r −

e

~
E · ∇k

]
fn(r,k, t) =

(
∂fn

∂t

)
coll

(2.53a)[
∂

∂t
+ vp · ∇r +

e

~
E · ∇k

]
fp(r,k, t) =

(
∂fp

∂t

)
coll

(2.53b)

Here E = −∇ϕ denotes the electric field. As electrons and holes are charged
particles their effect on the electric field has to be included, i.e. the total electric
field has to satisfy the Poisson equation

−∇ (ε∇ϕ) = −e(n− p+ C) (2.54)

where C is the total density of the fixed charges in the system, e.g. ionized dopants.
The electron and hole densities n and p are given by the zeroth moments

∫
fn dk

and
∫
fp dk, respectively.

By applying the method of moments to this system as described in the last
section, we end up with the following continuity equations for electrons and holes,
which together with the Poisson equation (2.54) form the drift-diffusion equations,
in the mathematical community referred to as the Van Roosbroeck equations:3

∂n

∂t
+∇jn = −R+G (2.55a)

∂p

∂t
+∇jp = −R+G (2.55b)

with the constitutive equations (assuming constant temperature)

jn = −Dn∇n+ µnn∇ϕ (2.56a)
jp = −Dp∇p− µpp∇ϕ (2.56b)

The electrical current densities are given by Jn = −ejn and Jp = ejp.
From statistical physics we know expressions for the non-degenerate particle

densities in local equilibrium in terms of electro-chemical potentials φn and φp (see
e.g. [57,56])

n = Nc exp
(
eϕ− eφn − Ec

kBT

)
(2.57a)

p = Nv exp
(
Ev − eϕ+ eφp

kBT

)
(2.57b)

3It is interesting to note, that the continuity equations can easily be derived in an independent
way from the first Maxwell equation (see [96])

∇×H = J +
∂D

∂t
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The effective densities of states Nc and Nv for electrons and holes, respectively, are
given by

Nc = 2
(
kBTm

∗
n

2π~2

)3/2

and Nv = 2
(
kBTm

∗
p

2π~2

)3/2

(2.58)

where m∗
n,p are the density of states effective masses of electrons and holes. The

expressions for the densities generalize in the degenerate case to [5]

n = NcF1/2

(
eϕ− eφn − Ec

kBT

)
(2.59a)

p = NvF1/2

(
Ev − eϕ+ eφp

kBT

)
(2.59b)

F1/2(x) is the Fermi integral of order 1/2

F1/2(x) =
1

π1/2

∫ ∞

0

y1/2

1 + ey−x
dy

We will always assume the Einstein relations to hold locally, which connect the
diffusion coefficients to the carrier mobilities:

Dn =
kBT

e
µn, Dp =

kBT

e
µp (2.60)

where T is the local lattice temperature. The factor UT = kBT/e is called thermal
voltage. The relations (2.60) are valid for the non-degenerate case only. In the
degenerate case they can be generalized to [5]

µn = eDn
1
n

∂n

∂ϕ
, µp = −eDp

1
p

∂p

∂ϕ
(2.61)

Using the above expressions for the carrier densities and the Einstein relations
the electron and hole flux from eqns. (2.56) can be rewritten as

jn = µnn∇φn, jp = −µpp∇φp (2.62)

In this form the currents can be interpreted as pure diffusion currents with the
gradient of the electro-chemical potential as driving force.

2.2.1.2 Exciton transport

Excitons are quasi-particles formed by a bound electron-hole pair. Different types
of excitons are distinguished. When the distance between the electron and the hole
is big compared to the lattice constant it is called Wannier-Mott exciton. When
the electron-hole distance is comparable to the lattice constant it is called Frenkel
exciton. In this latter case the notion of a bound electron-hole pair has to be
understood in a rather formal way [61].
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A very simple model of a Wannier-Mott exciton can be obtained by adopting
the following simplifying assumptions: Let the crystal have cubic symmetry and
a direct bandgap, assume two parabolic bands with extrema at k = 0 and let the
electron-hole interaction be the Coulomb attraction scaled by the dielectric constant
of the semiconductor. The latter assumption obviously is only valid if the exciton
radius is large enough. We can then write down a Schrödinger type equation for
this two-particle system and obtain for the exciton energy levels i [61]

Ex(i,k) =
~2k2

2mx
+ Eg −

m′e4

2ε2~2i2
(2.63)

where mx = mn +mp, Eg = Ec−Ev, m′ = mnmp/(mn +mp) and ε are the exciton
mass, the bandgap, the reduced mass of the system and the dielectric constant,
respectively. The last term on the right hand side represents the exciton binding
energy R. Fig. 2.4 illustrates graphically the above equation.

0

E

k

Eg

R

e

x

h

Figure 2.4: Electron, hole and exciton dispersion in a semiconductor.

For the description of the excitons in a drift-diffusion picture we will in the
following ignore the electric dipole moment due to the spatial separation of the
electron and hole in a Wannier-Mott exciton, despite its interaction with the electric
field. As the exciton is composed by two quasi-particles of half-integer spin it is a
composite boson and has to be described by Bose-Einstein statistics. But assuming
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low density we can use Boltzmann statistics and get for the exciton density

x = (2J + 1)
(
kBTmx

2π~2

)3/2

e(eφx−Eg+R)/kBT (2.64)

Here, J is the exciton spin and φx represents the analogue of the electro-chemical
potential of holes and electrons. Note that in this case eφx coincides with the
chemical potential µ of the exciton gas. The expression in front of the exponential
is the effective density of states Nx of the exciton band.

To get the drift-diffusion transport equations of the excitons we can use the
results of the previous sections and immediately get

∇jx = −∇(µxx∇φx) = −Rx +Gx (2.65)

where we defined an exciton mobility µx and exciton recombination/generation
rates Rx and Gx.

The following generation/recombination processes are considered in the imple-
mentation:

• Dissociation of an exciton into a free electron hole pair, modeled by a relax-
ation time τdiss

• Nonradiative recombination, modeled by a relaxation time τnr

• Radiative recombination, modeled by a relaxation time τr

With this the total recombination gets Rx = x(1/τdiss + 1/τnr + 1/τr) = x/τx,
where τx is defined as total exciton relaxation time. The main source of exciton
generation is the formation of bound pairs from the populations of free electrons and
holes. Together with dissociation it couples the exciton system to the electron/hole
system. This is described in some more detail in the next section.

2.2.1.3 Coupling of exciton and electron/hole transport

In the drift-diffusion picture adopted in TIBERCAD the coupling between the exci-
ton, electron and hole populations is achieved by means of generation and recom-
bination mechanisms. We assume that electrons and holes form excitons with a
rate that is proportional to the electron and hole densities such that the exciton
generation rate can be written as

Gx = γnp (2.66)

Furthermore we consider the dissociation of excitons into free electron hole pairs as
the reverse process of exciton generation and model it by a dissociation time τdiss

Rx =
x

τdiss
(2.67)



2.3 Heat transport 25

As the generation of excitons “destroys” free electrons and holes, the rate Gx takes
the role of a recombination rate in the electron and hole continuity equations.
Writing down all three continuity equations we get the system

∇jn = ∇jp = Ge−h −Re−h −Gx +Rx (2.68a)
∇jx = Gx −Rx (2.68b)

where we included a general electron-hole recombination and generation term. Con-
sidering thermodynamic equilibrium, i.e. jn = jp = jx = 0, we immediately get

Gx = Rx ⇒ γnp =
x

τdiss
, (2.69)

and using neqpeq = n2
i resulting from eq. (2.68a)

xeq = γτdissn
2
i (2.70)

As thermodynamic equilibrium implies chemical equilibrium we can get an equiva-
lent expression from the law of mass action by viewing the exciton formation and
dissociation as a chemical reaction [57]

n+ p 
 x ⇒ neqpeq

xeq
= χ(T ) (2.71)

where χ(T ) is some function of temperature. By recalling the expressions for the
equilibrium densities given in the last sections it can be found to be (in the non-
degenerate case)

χ(T ) =
NcNv

Nx
e−(R+eφx,eq)/kBT (2.72)

This allows to calculate the equilibrium chemical potential of the exciton gas when
the effective density of exciton states Nx is known.

Note that eq. (2.70) could have been derived equally well even including the
other excitonic recombination processes mentioned in the last section by invoking
the principle of detailed balance [19].

For the simulations done with TIBERCAD the values of γ and the exciton life
times were estimated from the results of Monte Carlo calculations.

2.3 Heat transport

Due to miniaturization and high density integration of semiconductor devices ther-
mal effects gain crucial importance for their functionality. Self-heating due to
power dissipation is in fact considered as one of the major limits for device in-
tegration [108]. Therefore an accurate description of heat generation and transport
is essential for the simulation of highly miniaturized and integrated devices.
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The implementation of macroscopic heat transport in TIBERCAD is based on
irreversible thermodynamics [110,108,59].4 We assume that the system under con-
sideration can be characterized by a set of thermodynamic state variables. In the
electron/hole system for example we choose the set [94]

(φn, Tn) (φp, Tp) TL

which has the property that at thermodynamic equilibrium φn = φp = const and
Tn = Tp = TL = const. For simplicity we will neglect hot carrier effects and
thus we write Tn = Tp = TL, and we will restrict the considerations to electrons.
Our aim is to find expressions that connect the electron and heat fluxes j and
j(Q) to appropriate source terms (the generalized forces) by means of some kinetic
coefficients. By examining the rate of change in entropy we find that the source
terms are given by ∇φ/T and ∇T/T 2 [59], where φ = φn, and we write therefore
(assuming an anisotropic material)

ji = nµik(∂kφ+ P∂kT ) (2.73a)

jQ
i = βik∂kφ− γik∂kT (2.73b)

jQ,L
i = −κL

ik∂kT (2.73c)

The last equation represents the diffusive heat flux of the lattice which is indepen-
dent of carrier transport. P is called the thermoelectric power of the electrons. It
can be derived starting from (2.52b) by expanding ∇n and using (2.57), (2.58) and
the Einstein relation:

ji = −Dik∂kn+ nµik∂k(ϕ−
kBT

e
)

= −Dik

[
∂kNc

Nc︸ ︷︷ ︸
1
Nc

∂Nc

∂T

n+ n∂k

(
eϕ− eφ− Ec

kBT

)]
+ nµik∂k(ϕ−

kBT

e
)

= −nDik

[
3
2

1
T
∂kT +

e∂k(ϕ− φ)
kBT

−
(
eϕ− eφ− Ec

kBT

)
︸ ︷︷ ︸

ln(
n

Nc
)

∂kT

T

]
+ nµik∂k(ϕ−

kBT

e
)

= nµik

{
∂kφ+

kB

e

[
ln
(
n

Nc

)
− 5

2

]
∂kT

}
(2.74)

Therefore we can identify the electron thermoelectric power in the non-degenerate
case as the scalar quantity5

P =
kB

e

[
ln
(
n

Nc

)
− 5

2

]
(2.75)

4This model has been implemented in software by Michael Povolotskyi and Giuseppe Romano.
5This expression is only correct under the hypothesis that the effective mass is temperature-

independent. If the latter is additionally considered anisotropic, P becomes a tensor.
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Due to the Onsager reciprocity relation [77] not all coefficients in eqns. (2.73a)
and (2.73b) are independent, but nµikP and βik are connected by the relation [59]

Tβik = −enPT 2µik (2.76)

Substituting ∂kφ = µ−1
ki ji/n− P∂kT in (2.73b) we get for the electronic heat flux

jQ
i = −eTPji − (γik − enTP 2µik)︸ ︷︷ ︸

κn
ik

∂kT (2.77)

In the above equation we defined the heat conductivity of the electron gas, κn
ik.

The total energy flux can now be written as

ju
i = jQ,L

i + jQ
i − eφji

= −
(
κL

ik + κn
ik

)︸ ︷︷ ︸
κtot

ik

∂kT − e(φ+ TP )ji (2.78)

The last term represents the energy carried by the electron flow. The energy flux
satisfies the continuity equation, u beeing the internal energy density

∂u

∂t
− ∂ij

u
i =

(
∂u

∂t

)
rad

(2.79)

The above continuity equation can be transformed to [108]

ctot∂T

∂t
+ ∂iκ

tot
ik ∂kT = H (2.80)

where c and κik are the total heat capacity and thermal conductivity of the system
and H contains all thermal sources and sinks. Here we neglect radiative contri-
butions and we are only interested in the stationary case. Comparing (2.78) and
(2.80) we get

H = e∂i[(φ+ TP )ji]
= eji(∂iφ+ P∂iT ) + eTji∂iP + e(φ+ PT )∂iji

=
e

n
µ−1

ik jijk + eTji∂iP − eR(φ+ PT )
(2.81)

The first term in the last equation represents the well known Joule heat, which in the
scalar case simplifies to the more familiar expression HJoule = e|j|2/µn. The second
term can be decomposed to obtain the Peltier and Thomson effects. The former
is due to spatial variations in the carrier density or changes of the thermoelectric
power at material interfaces, the latter is assigned to the change of thermoelectric
power due to temperature variations. We finally note that the thermal conductivity
of the carriers are usually some orders of magnitude lower with respect to the lattice
thermal conductivity and can therefore be neglected [108].
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2.4 Quantum mechanical models

The quantum mechanical models implemented in TIBERCAD are based on a single
particle Schrödinger-like equation of the form

H(r)ψ(r) = Eψ(r) (2.82)

where H, E and ψ(r) are the Hamiltonian of the system, the eigenenergy and the
wavefunction for this eigenenergy, respectively. The Hamiltonian can generally be
written in the form

H = −~2

2
∇r

(
1
m
∇r

)
+ Veff (r) (2.83)

where m is a possibly position dependent effective mass. The first term represents
the electron kinetic energy. The second term is an effective potential comprising
the ionic potential of the atoms forming the structure, the Hartree potential and
other contributions.

There are many different solution approaches for the eigenvalue problem (2.82),
ranging from ab initio (first principles) to empirical methods and differing mainly
in the level of approximation of Veff and the choice of the basis in which to ex-
pand the wavefunction ψ(r) [67, 5, 100, 26]. For the study of microstructures most
often k ·p approaches in the framework of the envelope function approximation are
employed [26].

The next sections briefly describe the approaches as implemented in TIBERCAD,
2.4.3 being a short introduction to quantum mechanical transport models. They
are not intended as exhaustive presentations but rather as an introduction to the
basic features.

2.4.1 Envelope function approximation

The basic idea of the envelope function approximation (EFA) is to expand the single-
particle wavefunction ψi(r) of a heterostructure in a basis of periodic functions
Un(r) = Un(r+R), where R is a lattice vector of the underlying Bravais lattice [64,
24]

ψ(r) =
∑

n

Fn(r)Un(r) (2.84)

Usually, the bulk Bloch functions of one of the constituent materials are chosen as
basis [82,24,25] such that

ψ(r) =
∑
n,k

Cn,kun,k(r)eikr (2.85)

Next, only the Bloch function for a certain k = k0 are kept in the expansion. This
leads to

ψ(r) =
∑
n,k

C̃n,kun,k0(r)eikr

∑
n

Fn(r)un,k0(r)
(2.86)
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where Fn(r) =
∑

k C̃n,keikr is the envelope function set. Usually k0 is chosen to be
a band extremum.

The expansion (2.86) for the wavefunction can now be inserted into eq. (2.82)
to get a Schrödinger-like equation for the envelope functions Fn(r) (omitting the
argument in Fn(r) and Un(r)):

∑
n

(
− ~2

2m
∇2 + V

)
FnUn =

∑
n

[
− ~2

2m
(∇2Fn)Un −

~2

m
∇Fn∇Un −

~2

2m
(∇2Un)Fn + V FnUn

]
= E

∑
n

FnUn (2.87)

This equation has to be brought to envelope-function expansion form. This can be
achieved by means of the matrix elements of the different operators acting on Un.
In detail, and neglecting any nonlocalities [24]:

(a)

∇Un =
i

~
pUn =

i

~
pn′nUn′ , with pn′n =

1
Ωc

∫
U∗

n′pUn dx

(b)

∇2Un = −2m
~2
TUn = −2m

~2
Tn′nUn, with Tn′n =

1
Ωc

∫
U∗

n′TUn dx

(c)

V Un = Vn′nUn, with Vn′n =
1
Ωc

∫
U∗

n′V Un dx

where 1
Ωc

∫
U∗

n′Un dx = δn′n.
With the above expressions we recast (2.87) to get (after some changes of in-

dices)

∑
n

− ~2

2m
∇2Fn − i

~
m

∑
n′

pnn′∇Fn′ +
∑
n′

(Tnn′ + Vnn′)︸ ︷︷ ︸
Hnn′

Fn′

Un = E
∑

n

FnUn

(2.88)
Equating the coefficients on both sides we finally get the equation for the envelope
function

− ~2

2m
∇2Fn(r)− i

~
m

∑
n′

pnn′∇Fn′(r) +
∑
n′

Hnn′(r)Fn′(r) = EFn(r) (2.89)

Note that to get the above equation we did not do any approximation other than
neglecting the nonlocal part in Hnn′ , which in any case is only important near the
heterointerfaces [24].



30 2 Physical Models

The solution of (2.89) is still compuationally very demanding and further sim-
plification is needed. For this purpose the different bands associated with the dif-
ferent envelope functions Fn are divided into two groups of bands denoted by S and
R [82, 24]. The different bands Fs of the S group are the dominant bands whereas
the bands Fr contained in the R group are considered as remote bands. The latter
are approximated such as to eliminate them from the system of equations to get
equations only for the dominant bands. The small Fr are written as as

Fr ≈ (E −Hrr)−1
∑
s′

(
−i ~
m

prs′∇Fs′ +Hrs′Fs′

)
(2.90)

For the dominant bands we get, setting n = s in (2.89)

− ~2

2m
∇2Fs − i

~
m

∑
s′

pss′∇Fs′ +
∑
s′

Hss′Fs′

− i
~
m

∑
r

psr∇Fr +
∑

r

HsrFr = EFs (2.91)

Substituting (2.90) into the above equation we finally get

− ~2

2m

∑
s′

∇ ·
[
γ

(r)
ss′ (E, r) · ∇Fs′(r)

]
+
∑
s′

−i~
m

pss′ · ∇Fs′(r)+

∑
s′

H
(2)
ss′ (E, r)Fs′(r) +

∑
s′,r

−i~
m

psr · ∇
[
(E −Hrr(r))−1Hrs′

]
Fs′(r)+

∑
s′,r

−i~
m

psrHrs′ +Hsrprs′

E −Hrr(r)
· ∇Fs′(r) = EFs(r) (2.92)

The second rank tensor γ
(r)
ss′ is given by

γ
(r)
ss′ (E, r) = Iδss′ +

2
m

∑
r

psr ⊗ prs′

E −Hrr(r)
(2.93)

where I is the second rank unity tensor. The second term in the above expression
can be interpreted as a renormalization of the electron mass due to the influence of
the remote bands, giving rise to the name effective mass approximation often used
for this method.

The term H
(2)
ss′ in (2.92) is defined by

H
(2)
ss′ (E, r) = Hss′(r) +

∑
r

Hsr(r)Hrs′(r)
E −Hrr(r)

(2.94)

and can be seen as a modified or effective band energy.
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Eq. (2.92) still represents a nonlinear eigenvalue problem due to the energy
dependent terms. It can be simplified further by discarding small terms. Espe-
cially the fourth and fifth term on the left-hand side of (2.92) are non-zero only
near the interfaces and scaled by a large energy denominator and can therefore be
neglected [24].

In the simplest case, i.e. considering only one dominant band with minimum in
Γ, an effective mass approximation for the conduction band can be obtained. It
reads, writing r = c,

− ~2

2m
∇
(

1
mc(E, r)

∇Fc(r)
)

+H(2)
cc (E, r)Fc(r) = EFc(r) (2.95)

where 1/mc(E, r) and H(2)
cc (E, r) are given by (2.93) and (2.94), respectively. The

last approximation is done by assuming a large band gap such that E −Hrr(r) ≈
Eg(r). This removes the energy dependences and leads to the final eigenvalue
equation for the conduction band

− ~2

2m
∇
(

1
mc(r)

∇Fc(r)
)

+ Ec(r)Fc(r) = EFc(r) (2.96)

mc and Ec can be replaced by experimental values. We note that the basis functions
Un are the same in the whole structure and therefore the envelope functions are
continuous [82,24].

Equations for the valence bands can be obtained in a similar way, but all the
three top valence bands having p-type angular symmetry have to be treated as
dominant ones. The latter are usually denoted as |X〉, |Y 〉 and |Z〉. The remote
bands that have to be included have s-like (Γ1, conduction band) and d-like (Γ12,
Γ15) symmetry.

We introduce a new operator k = −i∇, which basically transforms (2.92) to
k-space, and choose a coordinate system such that X ‖ [100], y ‖ [010] and z ‖ [001].
First we write down the effective mass approximation for the valence band states
without considering spin-orbit coupling, leading to a three-fold degeneracy in the
Γ-point. We formulate the eigenvalue problem in a short form as

Hvv(r)~Fv(r) = E ~Fv(r) (2.97)

with ~Fv =
(
FX FY FZ

)T . A calculation of all the relevant terms of (2.92) con-
sidering the aforementioned remote bands leads to the following 3× 3 valence band
Hamiltonian for a wurtzite crystal [42]

Hvv =

Ev + ~2

2mk
2 0 0

0 Ev + ~2

2mk
2 0

0 0 Ev + ~2

2mk
2

+

kxL1kx+kyM1ky+kzM2kz kxC1ky+kyM1kx kxC2kz+kzM2kx

kyC1kx+kxM1ky kxM1kx+kyL1ky+kzM2kz kyC2kz+kzM2ky

kzC2kx+kxM2kz kzC2ky+kyM2kz kxM3kx+kyM3ky+kzL2kz


(2.98)
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The different parameters in the Hamiltonian are given by the matrix elements
in (2.92), considering the symmetry properties of the chosen basis. Explicit expres-
sions can be found e.g. in [82] and [42] and references therein.

Formally the same Hamiltonian is found for zinc blende crystals. However, due
to the cubic symmetry, the Li, Mi and Ci in (2.98) are all equal to L, M and C,
respectively.

Up to now we did not consider spin at all. Spin-orbit interaction, which is a
relativistic effect, is taken into account approximately by extending the Hamilto-
nian (2.83) in the following way [82]:

H =
p2

2m
+ Veff (r) +

~
4m2c2

[σ ×∇Veff (r)] · p (2.99)

To include spin in the calculation we extend the basis to the six kets |X ↑〉, |Y ↑〉,
|Z ↑〉, |X ↓〉, |Y ↓〉 and |Z ↓〉, where the arrows symbolically stand for the direction
of the projection of spin onto the z-axis (spin up, spin down). We denote the
resulting 6× 6 EFA Hamiltonian by H6×6. It reads

H6×6 =
(
Hvv 0
0 Hvv

)
+H

s/o
6×6 (2.100)

where the spin-orbit coupling Hamiltonian is given by [82]

H
s/o
6×6 =

∆
3



0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 (2.101)

The ∆ in the above expression is the spin-orbit coupling energy. The basis which
diagonalizes the spin-orbit Hamiltonian defines the states known as light, heavy and
split off holes.

In some cases, e.g. for low band gap semiconductors, treating the conduction
band as a remote band is a too poor approximation. In this situation the top
valence bands and the lowest conduction band are considered as dominant ones
and a 8× 8 EFA can be formulated, using as basis |S ↑〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |S ↓〉,
|X ↓〉, |Y ↓〉, |Z ↓〉. The total EFA Hamiltonian is written as

H8×8 =
(
H4×4 +Hstrain

4×4 0
0 H4×4 +Hstrain

4×4

)
+H

s/o
8×8 (2.102)

The spin-orbit contribution H
s/o
8×8 can be obtained from (2.101) by adding all-zero

rows and columns for the |S ↑〉 and |S ↓〉 states, as s-states do not show spin-orbit
interaction. H4×4 is given by

H4×4 =
(
Hcc Hcv

H†
cv Hvv

)
(2.103)
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where Hcc is the 1× 1 conduction band Hamiltonian and Hcv is the 1× 3 coupling
between the conduction band and the three valence bands. Hvv is formally given
by (2.98), however the parameters are different as now the conduction band is not
anymore considered as remote band. A similar statement holds for Hcc, whereas
Hcv are new terms.

The contribution Hstrain
4×4 represents the first order correction due to strain [34].

For a zinc blende crystal it reads

Hstrain
4×4 =
acTr(ε) 0 0 0

0 lεxx +mεyy +mεzz nεxy nεxz

0 nεxy mεxx + lεyy +mεzz nεyz

0 nεxz nεyz mεxx +mεyy + lεzz


(2.104)

ac is the absolute deformation potential for the conduction band. l, m and n are
given by [42]

l = av + 2b (2.105a)
m = av − b (2.105b)

n =
√

3d (2.105c)

where av is the absolute valence band deformation potential and b and d are shear
deformation potentials. We can note that the relative volumic change of the unit
cell, given by the trace of the strain tensor, leads to an absolute shift of the band
energies by means of ac and av, whereas b and d lead to an additional individual
shift of each valence band. Thus strain can lift the degeneracy of the light and
heavy hole bands. We finally note that the k-vector in H4×4 (c.f. (2.98)) has to be
substituted by ki = (δij−ζij)kj , where δij is the Kronecker delta and ζij = ∂ui/∂xj

(c.f. section 2.1) [82,34].
We will shortly illustrate the application of the EFA as described above to a

heterostructure.6 Assume an AlGaAs/GaAs/AlGaAs quantum well grown in z-
direction (z ‖ [001]), thus maintaining translational symmetry in the xy-plane. The
parameters in the Hamiltonian, e.g. (2.98), are in this case constant in the xy-
plane but vary with z. We separate the k-space into a parallel and an orthogonal
component k‖ and k⊥, where k‖ lies in the xy-plane. In z-direction we transform
back to real space, using kz = −i∂z. Writing the envelope function as Fk‖(z) we
then get an eigenvalue problem for each k‖ reading

Hk‖(z, ∂z)Fk‖(z) = Ek‖Fk‖(z) (2.106)

For the actual calculation the above equation has to be descretized on a mesh along
the z-axis, and appropriate boundary conditions for Fk‖(z) have to be provided.

6The single-band, 6 × 6 and 8 × 8 EFA has been implemented in TIBERCAD by Michael Po-
volotskyi.
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In TIBERCAD the discretization is done using the standard Galerkin finite element
method (c.f. section 3.3.1), i.e. we use piecewise linear basis functions ϕi(z), expand
Fk‖(z) =

∑
i fiϕi(z) and write (2.106) in weak form in such a way as to get a finite-

dimensional generalized eigenvalue problem Hijfj = ESijfj∫
ϕiHk‖(z, ∂z)ϕj dz︸ ︷︷ ︸

Hij

fj = Efj

∫
ϕiϕj dz︸ ︷︷ ︸
Sij

(2.107)

Obviously the same approach can be used for other structures. In a quantum wire
along x e.g. symmetry is broken in y and z direction and k‖ will be a 1D space
along x.

The result of an EFA calculus can be used to calculate the quantum mechanical
particle density and thus the charge density entering into the Poisson equation. As
the Hamiltonian depends on the electric potential V , the Schrödinger and Poisson
equations have to be solved self-consistently. The electron density can be written
based on the conduction band envelope functions and the corresponding energy
levels as

nQ(r) =
∑

s

1
(2π)d

∫
BZ‖

|Fs(r,k‖)|2f

(
Es(k‖) + eφn,s

kBT

)
dk‖ (2.108)

where f(x) = 1/(1 + exp(x)) denotes the Fermi-function. d denotes the dimension
of the parallel Brillouin zone. The envelope functions are normalized by∫

Ω
|Fs|2 dx = 1 (2.109)

For the quantized hole states we get a similar expression

pQ(r) =
∑

s

1
(2π)d

∫
BZ‖

|Fs(r,k‖)|2f

(
−
Es(k‖) + eφp,s

kBT

)
dk‖ (2.110)

The mean electro-chemical potentials φn/p,s are calculated as mean values 〈Fs|φ|Fs〉

φn/p,s =
∫

Ω
φn/p(r)|Fs(r)|2 dr (2.111)

The approach to calculate quantum density as described here is in principle
only correct in equilibrium. The electrochemical potentials are, however, often
approximately constant in regions of quantized states such that the above approach
leads to reasonable results.

2.4.2 Atomistic models

In the tight-binding scheme (TB) the wavefunction is expanded as a sum of atomic
orbitals |nα〉 = ψα(r −Rn) [26, 79].7 The n indexes the atom located at position

7The implementation of atomistic models in TIBERCAD is carried out by Alessandro Pecchia
and Gabriele Penazzi.
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Rn and the index α specifies the type of the orbital with respect to symmetry and
spin quantum numbers. The wave function |Ψ〉 of the system then reads

|Ψ〉 =
∑
n,α

Cnα|nα〉 (2.112)

This is called linear combination of atomic orbitals (LCAO). The use of atomic
orbitals reflects (or induces) the assumption that the electronic states in the crystal
are not too much disturbed with respect to the states in the isolated atoms, in
contrast to free electron models, where the electrons are assumed to be essentially
unbound in the crystal and therefore plain waves are used as basis functions. This
explains the name of the tight-binding method and lets expect that it produces
better results for lower lying (more bound) states, i.e. the valence bands.

Putting the above LCAO expansion into the Schrödinger equation and project-
ing onto the LCAO basis we get∑

nα

[
Hn′α′,nα − ESn′α′,nα

]
Cnα = 0 (2.113)

The solution of this generalized eigenvalue problem is a set of expansion coefficients
Cnα and corresponding eigenenergies E. Hn′α′,nα and Sn′α′,nα are the Hamiltonian
and overlap matrix elements, respectively. They are given by

Hn′α′,nα = 〈n′α′|H|nα〉 (2.114a)
Sn′α′,nα = 〈n′α′|nα〉 (2.114b)

Often orbitals are used that are orthogonalized by a procedure introduced by
Löwdin [63]. It has the important property that it preserves the symmetry of the
orbitals. However, the orthogonal orbitals have a longer range than the original
ones, which can be a disadvantage in practical implementations [79].

Let us assume the effective one-particle Hamiltonian H to be of the form

H =
p2

2m
+
∑

n

Vn(r −Rn) (2.115)

where each Vn is the (spherically symmetric) potential produced by the atom at
position Rn. With this, the Hamiltonian matrix elements can be written as

Hn′α′,nα =
∫
ψ∗α′(r −Rn′)

[
p2

2m
+
∑
n′′

Vn′′(r −Rn′′)

]
ψα(r −Rn) dr (2.116)

Thus we can identify four categories of integrals involving a potential:

(i) on-site integrals, where the orbitals and the potential are located on the same
atomic site, i.e. n = n′ = n′′

(ii) two-centre integrals, where one orbital and the potential are on the same site,
i.e. n 6= n′ = n′′ or n′ 6= n = n′′
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(iii) three-center integrals, where all the orbitals and the potential are located on
different sites, i.e n 6= n′ 6= n′′

(iv) the two orbitals are on the same site, but the potential on a different one, i.e.
n = n′ 6= n′′

Ususally not all the terms appearing in (2.116) are included in the Hamilto-
nian. Different implementations of tight-binding can therefore be distinguished on
the one hand by the number and type of terms that are included in the matrix
elements and on the other hand by the way they are calculated. Often a two-center
approximation is used and only nearest or second-nearest neighbours are consid-
ered. Another characteristic of different implementations is the size of the basis
used in the expansion (2.112).

Very successful are empirical approaches (empirical tight-binding, ETB) where
the matrix elements are considered as fitting parameters of experimentally accessible
quantities such as band gaps at high symmetry points, effective masses and so on.
This approach leads to parameter sets that can very reliably reproduce true band
structures.

In ab initio approaches the matrix elements are evaluated from first principles
using e.g. density functional theory or pseudo-potential methods.

When the system under consideration exhibits translational symmetry in one
ore more dimensions, it is possible to decrease the dimension of the eigenvalue
problem by writing the orbital basis as a bloch sum, e.g. for a bulk crystal

|nα〉 =
∑
R

eik·(R+νn)|R + νn, α〉 (2.117)

where R is a lattice vector and νn denotes the postion of the n-th atom inside the
primitive cell.

As an example we apply the empirical tight-binding scheme for the calculation
of the GaAs bulk band structure, chosing a basis consisting of ten orbitals per atom
and using the two-center nearest neighbour approximation. This parametrization is
called sp3d5s∗-parametrization, where s, p and d denote the symmetry of the atomic
orbitals. Including spin-orbit interaction we get a 40×40 eigenvalue problem that
has to be solved for each k-point to get the band structure shown in Fig. 2.5. The
parametrization of the matrix elements was taken from [48].

2.4.3 Quantum transport

Particle transport can be described quantum mechanically by identifying the par-
ticle flux with the probability density flux calculated from the wavefunction ψ(r)
of the particle [31,58]:8

j =
1

2m
(ψp∗ψ∗ + ψ∗pψ) =

i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) (2.118)

8Quantum transport in TIBERCAD is worked on by Alessandro Pecchia and Fabio Sacconi.
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Figure 2.5: Band structure of GaAs calculated with sp3d5s∗ parametriza-
tion given in [48].

When examining the above equation we note that whenever ψ is a solution of the
stationary Schrödinger equation for a closed system and therefore is a real function,
the flux vanishes. This means that the system has to be treated as an open system
by imposing open boundary conditions.

Eq. (2.118) is obtained from the time-dependent Schrödinger equation when
deriving the continuity equation for the probability density

∂ρ

∂t
+∇ · j = 0 (2.119)

The derivation is based on the hermeticity of H, that is on the reality of V . This
however means that the number of particles in the device is constant and especially
that transport is non-dissipative [92].

Usually eq. (2.118) is not applied in this form to calculate currents. Several
different approaches are used, depending on the properties of the system under
consideration. In the case of coherent (and non-coherent elastic) transport the
Landauer-Büttiker formalism can appropriately describe transport, using the notion
of transmission functions [31,18]. It is especially useful for the study of mesoscopic
systems at low temperatures. Consider a system as shown in Fig. 2.6. It consists of
three terminals (the contacts) connected to a conductor. The contacts i are assumed
to be in equilibrium, each being characterized by an electro-chemical potential µi

and an equilibrium distribution fi(E). Transmission coefficients are defined that
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Figure 2.6: A three-terminal device. The three contacts, connected to a
conductor, are assumed to be in equilibrium.

describe the total transmission from contact q to contact p as T pq(E). The total
net current from contact p into the conductor is then given by

Ip =
2e
h

∫ ∑
q

[
T qp(E)fp(E)− T pq(E)fq(E)

]
dE (2.120)

In equilibrium and when there is no inelastic scattering in the conductor, the
transmission functions satisfy the relation

∑
q T qp(E) =

∑
q T pq(E) and the above

equation simplifies to

Ip =
2e
h

∫ ∑
q

T pq(E) [fp(E)− fq(E)] dE (2.121)

If the particle flux is carried by different modes in the different contacts (e.g. given
by different Landau-levels in a hall bar), then the total transmission is given by

T pq(E) =
∑
m∈p

∑
n∈q

Tmn (2.122)

where Tmn is the transmission probability from mode n in contact q to mode m in
contact p.

The transmission functions as described before are closely related to the scat-
tering matrix (S-matrix). The latter is defined as the (unitary) matrix that relates
incoming wave amplitudes to the outgoing ones, in a similar way as for the S-
parameters in microwave engineering. We denote the incoming waves as a and
the outgoing waves as b such that b = Sa. The total number of propagating
modes is the sum of the modes in each contact (or lead). The connection with the
transmission function is then given by the relation Tmn = |smn|2.

The S-matrix can be calculated from the Schrödinger equation, using e.g. the
envelope function approximation or a tight-binding description of the conductor as
introduced in the last two sections.
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Although the approach based on the Landauer-Büttiker formalism in principle
cannot treat non-coherent transport, it can be accounted for in a phenomenological
way by introducing virtual floating voltage probes that will simulate an incoherent
compononent in the current flow between the ordinary contacts [31].

To go a step beyond, a description based on the density matrix can be adopted,
based on the quantum Liouville equation [42]

∂ρ

∂t
= − i

~
[H, ρ] +

(
∂ρ

∂t

)
int

(2.123)

where ρ is the density matrix of the system under consideration and the second
term on the right hand side describes the interaction with the outside world, in
analogy to the scattering term in the Boltzmann equation. In a pure state, the
density matrix can be defined as ρ = |ψ〉〈ψ|. The mean value of any observable A
can be expressed using ρ as

〈A〉 = Tr(ρA) , (2.124)

Tr(•) being the trace operator. The above expression is independent of the choice
of the basis.

The quantum current in terms of the density matrix is given as the trace

j(r) = −i~
[
∇r −∇r′

2m
ρ(r, r′, t)

]
r′=r

(2.125)

Starting from the density matrix and the quantum Liouville equation it is
possible to derive a kinetic transport equation for a “quasi distribution function”
w(r,v, t), termed Wigner transport equation and Wigner function, respectively [66].
They form a quantum mechanical analogue of the Boltzmann transport equation
and can be used for numerical simulation [86].

We now slightly change the picture from Fig. 2.6 to the one given in Fig. 2.7. The

conductorlead 1 lead 2

Figure 2.7: A two-lead device. The leads connected to the conductor
are semi-infinite and assumed to be homogeneous such that a translational
symmetry can be exploited to collapse the dimensionality of the numerical
description.

main difference consists in substituting the contact reservoirs with homogeneous
semi-infinite leads. To keep the description simple we have drawn only two leads.
Assume we can describe the system shown in Fig. 2.7 by three lead and conductor
Hamiltonians H1, H2 and HC and by coupling terms H1C and HC2. Furthermore
there shall be no direct coupling between the two leads. We can then write down a
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Schrödinger equation in matrix form as H1 H1C 0
H†

1C HC HC2

0 H†
C2 H2

Ψ1

ΨC

Ψ2

 = E

Ψ1

ΨC

Ψ2

 (2.126)

To simplify the description we have assumed that the wavefunctions assigned to
the leads and the conductor are orthogonal (for a detailed discussion see [26, 79]).
Note that due to the semi-infinite leads the Hamiltonian in the above eigenvalue
problem is in principle always infinite dimensional. However, we still can symboli-
cally transform the equation and obtain a modified eigenproblem which apparently
only involves the conductor. As the leads do not interact, we are able to write e.g.
for lead 1

H1Ψ1 +H1CΨC = EΨ1 ⇒ Ψ1 = (E −H1)−1H1CΨC (2.127)

We put this and the equivalent expression for lead 2 into the second row of the
system (2.126) to get[

H†
1C(E −H1)−1H1C︸ ︷︷ ︸

Σ1

+HC +HC2(E −H2)−1H†
C2︸ ︷︷ ︸

Σ2

]
ΨC = EΨC (2.128)

The effect of the semi-infinite leads (or, the fact of being an open system) enters
into the eigenvalue problem by means of the operators Σi, called self-energies, which
we will discuss later on. We note that a discretization of (2.128) would lead to a
finite-dimensional problem, provided that expressions for the self-energies can be
found.

A more direct solution strategy for the eigenvalue problem (2.126) makes use of
so called transfer matrices [26,79]. It is most easily formulated within the framework
of a nearest-neighbour tight-binding approach. Assume a laterally homogeneous
system such that we can divide real and reciprocal space into orthogonal and parallel
components R‖, R⊥ and k‖, k⊥, and that we can define a parallel Brillouin zone
BZ‖. We then cut the device into parallel layers labeled by an index m along R⊥
such that the interaction between different layers has nearest-neighbour character.
We can then define a transfer matrix Γm for each layer describing the connection
between the layers m− 1 ↔ m↔ m+ 1:

Hm,m−1Cm−1 + Hm,mCm + Hm,m+1Cm+1 = ECm

⇓(
Cm+1

Cm

)
= Γm

(
Cm

Cm−1

)
(2.129)

The transfer matrix of the m-th layer can easily be found and reads

Γm =
(

H−1
m,m+1(Hm,m − EI) H−1

m,m+1Hm,m−1

I 0

)
(2.130)
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The Cm in the above expressions is a vector containing the expansion coefficients.
Its dimension N is given by the number of orbitals per parallel unit cell that are
used as basis in which the wavefunction is expanded (cf. eq. (2.112)).

The leads are treated in a similar way. In this case the layers are called prin-
ciple layers (PL) or superlayers (SLAY). Additionally, we require the expansion
coefficients to satisfy a Bloch condition of the form

Cm = eik⊥d⊥Cm−1 (2.131)

where d⊥ is the width of the PL. This allows the formulation of an eigenvalue
problem in the leads of the form

Hm,m−1Cme−ik⊥d⊥ + Hm,mCm + Hm,m+1Cm+1 = ECm

Cm+1 = e−ik⊥d⊥Cm

⇓(
Hm,m − E Hm,m+1

I 0

)(
Cm

Cm+1

)
= e−ik⊥d⊥

(
−Hm,m−1 0

0 I

)(
Cm

Cm+1

)
(2.132)

The 2N eigenvalues define N pairs of in general complex k⊥, corresponding to two
sets of complex eigenfunctions, one defining incoming waves and the other outgoing
waves. The states with complex k⊥ are called evanescent states and describe states
that cannot freely propagate.

Let the device extend from layer m = 1 to layer m = N such that the first two
PL of the right contact correspond to m = N+1, m = N+2 and of the left contact
to m = 0, m = −1. By means of the device transfer matrices we can relate the
right contact to the left contact by writing(

CN+2

CN+1

)
=
∏
m

Γm

(
C0

C−1

)
(2.133)

By applying the boundary conditions obtained from (2.132), the transmission coef-
ficients for incoming waves at the left contact to outgoing waves at the right contact
can be found. The sum over all possible states and integration over the parallel
Brillouin zone BZ‖ and the energy leads then to the total current [26]

I =
−e

(2π)3~

∫
BZ‖

dk‖

∫ +∞

−∞
dE

∑
k−⊥,j ,k+

⊥,i

T (E,k‖, k
+
⊥,i → k−⊥,j)[fR(E)− fL(E)]

(2.134)
where we denoted the incoming and outgoing states on the left and the right lead
as k+

⊥,i and k−⊥,j , respectively. Note the formal resemblance with (2.121).
The most powerful description of quantum transport phenomena is given by the

Green’s function approach [26, 79, 31]. The mathematical concept of the Green’s
function is the following. Consider a differential operator L and response function
u due to an excitation f such that

Lu = f, (2.135)
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then the Green’s function G can be seen as the inverse of L such that (in operatorial
sense)

u = Gf = L−1f (2.136)

As LG = 1, G can be obtained as the solution of (2.135) for a point source

LG(x, x′) = δ(x− x′) ⇒ u(x) =
∫
G(x, x′)f(x′) dx′ (2.137)

Therefore, G(x, x′) relates a response in x to an excitation in x′. Applying this
concept to the Schrödinger equation by writing L = E − H and thus G = (E −
H)−1, we note that the Green’s function is not uniquely defined without specifying
boundary conditions. These can be incorporated directly into the equation by
adding an infinitesimally small positive or negative imaginary part and thus defining
the so called retarded and advanced Green’s functions (letting η → 0+)

GR(x, x′) = (E −H + iη)−1 (2.138a)

GA(x, x′) = (E −H − iη)−1 (2.138b)

Using these expressions we can rewrite the eigenvalue problem (2.128) for the two-
lead device considered above as[

HC + ΣR
1 + ΣR

2

]
ΨC = EΨC (2.139)

where ΣR
n = H†

nCg
R
nHnC , being gR

n the Green’s function of the isolated n-th lead.
The latter can usually be calculated easily without the need of actually inverting an
inifinte-dimensional matrix. We can now define the Green’s function of the finite-
dimensional conductor including the effects of the contacts by means of the total
self-energy ΣR as

GR
C = (E −HC − ΣR)−1 (2.140)

with ΣR =
∑

n ΣR
n for non-interacting leads.

Making use of the relation between Green’s functions and the S-matrix (Fisher-
Lee relation, see [31]), a compact expression for the transmission function in terms
of the Green’s function and self-energies can be found. It reads

T̄pq = Tr[ΓpG
RΓqG

A] (2.141)

where we used the identity

Γp = i
[
ΣR

p − ΣA
p

]
, ΣA

p = (ΣR
p )† (2.142)

Γp essentially describes the coupling of lead p with the conductor.
We mention that experimentally accessible quantities can be obtained from the

Green’s functions, such as the local density of states which is given as [31]

ρ(r, E) = − 1
π

Im[GR(r, r;E)] (2.143)
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The self-energy in (2.140) is generally a complex quantity, therefore leading to
complex eigenenergies as the Hamiltonian is no longer Hermitian. The physical
meaning of this is that the states in the conductor have a finite lifetime, thus a
particle in the conductor will eventually escape into one of the leads, leading to a
current flow.

Although scattering inside the conductor can be taken into account to some
extent in the above approach by means of additional self-energy terms [31], a cor-
rect general treatment of transport in interacting systems has to be done in the
framework of non-equilibrium Green’s functions (NEGF). A description of the in-
volved theory would, however, go beyond the scope of this chapter and the reader
is referred to e.g. [31,79,50].



Chapter 3

Numerical Implementation of
the Drift-Diffusion Model

This chapter discusses the numerical implementation of the drift-diffusion model as
derived in 2.2.1 using the finite element method (FEM). Only the stationary case
is implemented so far in TIBERCAD, as in many cases the time dependence is of
minor interest [65].

3.1 The stationary drift-diffusion equations

The stationary form of the drift-diffusion equations is found by discarding any time
dependence in eqns. (2.54) and (2.55):

−∇ (ε∇ϕ− P ) = e
(
p− n+Nd

+ −Na
−) (3.1a)

∇jn = −R (3.1b)
∇jp = −R (3.1c)

The poisson equation includes spontaneous and strain induced polarization by
means of the electric polarization P as introduced in section 2.1.2. Nd

+ and Na
−

are the ionized donor and acceptor densities, respectively. R denotes the net re-
combination rate, i.e. the difference between recombination and generation rate.

Together with the constitutive equations (2.56) for the electron and hole flux

jn = −Dn∇n+ µnn∇ϕ, jp = −Dp∇p− µpp∇ϕ (3.2)

the equations (3.1) form a system of three coupled partial differential equations of
second order, which have to be solved for some adequate boundary conditions. In
eq. (3.2) we assumed the vector potential A to be independent of time such that
the electric field can be written as E = −∇ϕ.
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3.2 Scaling and the choice of the dependent variables

Both for analytical analysis and for numerical implementation it is necessary to scale
the equations to dimensionless quantities. Although different approaches to scaling
exist, the most appropriate method results from singular perturbation analysis of
the semiconductor equations [96,65]. Let Ω and C = Nd−Na denote the simulation
domain and the net doping density, respectively. Then the basic parameters of the
singular perturbation or unit scaling are the following:

• the characteristic device dimension x0 = diam(Ω)

• the thermal voltage ϕ0 = UT = kBT
e

• the maximum doping density C0 = sup
Ω

(C)

• the maximum mobility µ0 = max
(

sup
Ω

(µn), sup
Ω

(µp)
)

Table 3.1 lists some physical quantities together with their scaling factors. The
scaled quantities, denoted by a tilde over the symbol, are given by the ratio of
the unscaled physical quantity and the corresponding scaling factor, e.g. the scaled
electric potential reads ϕ̃ = ϕ/ϕ0.

Symbol Description Scaling factor

x position vector x0

ϕ, φn, φp electric and electro-chemical potentials ϕ0

n, p electron and hole density C0

µn, µp electron and hole mobilities µ0

Nd, Na doping densities C0

R recombination-generation rate ϕ0µ0C0

x2
0

Jn, Jp, J current densities eϕ0µ0C0

x0

P electric polarization ex0C0

Table 3.1: The scaling factors
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Applying this scaling scheme to the equations (3.1) and using (3.2) and (2.62)
we finally get the scaled system of equations to be solved numerically:

−∇̃
(
λ2εr∇̃ϕ̃− P̃

)
=
(
p̃− ñ+ Ñ+

d − Ñ−
a

)
(3.3a)

∇̃
(
−D̃n∇̃ñ+ µ̃nñ∇̃ϕ̃

)
= ∇̃

(
µ̃nñ∇̃φ̃n

)
= −R̃ (3.3b)

∇̃
(
−D̃p∇̃p̃− µ̃pp̃∇̃ϕ̃

)
= −∇̃

(
µ̃pp̃∇̃φ̃p

)
= −R̃ (3.3c)

The εr in the Poisson equation above is the relative dielectric constant. It explicitly
appears in the equation because it can be position dependent as is the case for
example in heterostructures. We could introduce one more scaling factor εr,0 =
supΩ(εr), but this was not done in this work. In the following we will consider only
the scaled system and denote the scaled quantities with the symbol of the unscaled
ones without the tilde.

The parameter λ appearing in the factor before the Laplacian of the electric
potential is given by

λ =
1
x0

√
ε0ϕ0

eC0
(3.4)

This value is tightly connected to the Debye length of a semiconductor which reads

λD =

√
ε0εrUT

eC
(3.5)

λ acts as a singular perturbation parameter in the Poisson equation (3.3a) [66].
To numerically solve the eqns. (3.3) a set of dependent variables has to be chosen.

The following three possible choices of variables for the continuity equations are
usually described in literature:

• “natural” variables n, p

• Slotboom variables υ = e−φn , ω = eφp

• the electrochemical potentials φn, φp

In all cases the electric potential ϕ is used as third variable.
There is no clear answer to the question, widely discussed in literature (see

e.g. [96, 16, 36, 44]), whether one set is better than the others. Often the “natural”
variables n and p are used. In this case (3.3a) is linear in ϕ and the operators in
eqns. (3.3b) and (3.3c) are linear in n and p, respectively. However, n and p usually
cover ranges of many orders of magnitude. Moreover, due to the terms proportional
to the gradient of the electric potential, the continuity equations are of convection-
diffusion type and a maximum principle cannot directly be applied to them. This
means that special care has to be taken when discretizing the equations by using
e.g. some Scharfetter-Gummel type approach or upwinding techniques [93, 70, 76].
Nevertheless, n and p are most often used as variables and there is a lot of literature
treating the numerics of the system (see e.g. [74,65,66,54,36,16]).
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The Slotboom variables are mostly useful for mathematical analysis as they lead
to selfadjoint equations. But they are cumbersome to use in the degenerate case.
Moreover, their variation is even bigger than that for n and p which makes them
difficult to handle numerically.

In this work the electrochemical potentials were chosen as dependent variables
for the following reasons:

1. All dependent variables are potentials and of the same order of magnitude

2. The current equations (2.62) can be used also in heterostructures, whereas the
eqns. (3.2) would need an explicit modification due to the position dependent
effective density of states and band edges. Moreover the generalisation to any
kind of quasi-particle seems more intuitive.

3. Whereas the use of n and p implies necessarily some sort of exponential in-
terpolation, we find a linear interpolation of φn and φp (as for the electric
potential) to be a good approximation. The reasons are as follows.

(a) in a homogenous material and far away from interfaces where material
properties change, chemical equilibrium will be reached between elec-
trons and holes such that np = n2

i , where ni is the intrinsic density. The
recombination-generation hence vanishes, and the electro-chemical po-
tential follows the electric potential (the chemical potential is constant)
which is interpolated linearly.

(b) in the case of minority carrier injection e.g. in pn-junctions into a doped
material, the electric potential in the doped region (away from the deple-
tion region) is approximately constant and the most important recombi-
nation process is due to trap-assisted two-particle transitions (Shockley-
Read-Hall recombination) which is given by the minority carrier density
divided by the carrier lifetime. An analysis of the (1D-)continuity equa-
tion in this case shows, that the minority density varies exponentially in
space:

d
dx

(Dn
dn
dx

−

≈0︷ ︸︸ ︷
µnn

dϕ
dx

) =
n− neq

τn
, n ∝ e−φn

Dn
d2n

dx2
− n− neq

τn
= 0, n(0) = n0, n(∞) = neq

⇒ n(x) = (n0 − neq)e−x/Ln + neq, Ln =
√
Dnτn

That is for n0 � neq a linear variation of the electrochemical potential
is an adequate approximation. Its gradient is controlled by the diffusion
length Ln of the carriers.

4. The goal of the TIBERCAD project is to couple atomistic/quantum mechani-
cal to classical drift-diffusion calculations. An elegant way to couple the two
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worlds could be the use of the electrochemical potentials as boundary condi-
tions, as the contacts of quantum regions are usually assumed to be reservoirs
in equilibrium with a certain Fermi level. To use this type of coupling local
equilibrium of the particle populations in the interfacing region of the two
models would have to be assumed. The applicability of this assumption has
to be studied yet in detail. [78]

5. The particle fluxes are described as a pure drift driven by the gradient of the
electro-chemical potentials so that the continuity equations aren’t anymore of
convection-diffusion type. Due to this, a stable discretization of the nonlinear
operators can be found, leading to an M -matrix for the discretized system
(see Def. 3.3). The stability of an iterative solution algorithm involving only
the system matrix, given that such an algorithm exists and is in principle
stable, would then not be affected by the discretization. For example, one
may use an explicit time-stepping algorithm to solve the system of equations.
As the system matrix is diagonally dominant for any value of the dependent
variables, it should be possible to find the minimal time step applying the
usual convergence analysis (e.g. [76]).

A drawback of using the electrochemical potentials as variables is the fact that
all the nonlinearities become of exponential type and the differential operators in
the continuity equations get nonlinear in the electro-chemical potentials. More-
over, the latter operators are expected to be somewhat ill-conditioned due to their
dependence on the particle densities.

For the discretization of the equations it will be assumed that the electrochem-
ical potentials are continuous functions in space. This is compatible with the as-
sumption of local equilibrium. However this becomes problematic in the case of het-
erostructures, where material properties change abruptly. In this case a nearly dis-
continuous behaviour of the electro-chemical potentials across the hetero-interfaces
can be observed (depending on the device structure and operating condition), con-
sequently leading to high gradients which can give rise to numerical complications.
Similar results can be obtained also by classical kinetic emission models [80], and
generally a discontinuity of the electro-chemical potentials across heterojunctions
should be expected in presence of thermionic emission or tunneling [38].

3.3 The drift-diffusion equations in finite element for-
mulation

This section treats the numerical implementation for the solution of the scaled,
stationary drift-diffusion equations (3.3) in the framework of the finite element
method (FEM). After a short introduction to the FEM, its application to the drift-
diffusion model will be described.
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3.3.1 The finite element method

Consider a (linear) partial differential equation of second order L(u) =
∑

i ∂
2
i u +

bj∂ju+ cu+ f = 0 on Ω ⊂ Rn with non-constant coefficients and boundary condi-
tions on ∂Ω that has a unique solution u ∈ U(Ω), where ∂i = ∂/∂xi and U(Ω) some
vector space (we will usually write U = U(Ω) in the following). Generally we cannot
expect to find an analytic, closed form for u. Instead, the equation has to be solved
numerically. For this purpose, as the vector space U is infinite-dimensional, the
original problem needs to be restated in a finite-dimensional space Uh = span{ψi}.
In many cases Uh is a subspace of U , i.e. Uh ⊂ U . The problem is then reduced
to solving a linear system in the coefficients ci such that Uh 3 uh =

∑
i ciψi ap-

proximates the true solution u ∈ U . This procedure can be understood as the
discretization of the problem. In all practical methods this is accompanied with a
discretization of the simulation domain Ω, i.e. the definition of a mesh or triangu-
lation Th. The subscript h in Th, Uh and Vh reminds of this fact and stands at the
same time for the characteristic mesh spacing of the triangulation. This notation is
useful as for convergence analysis families of triangulations {Thk

} with decreasing
mesh spacing hk are considered such that h1 > h2 > · · · > hk.

There are essentially three methods that are widely used for the numerical
solution of differential equations [76]:

1. The Finite Difference Method (FDM) approximates the differential operators
on a usually rectangular grid by finite differences.

2. In the Finite Box or Box Integration Method (FBM or BIM ), the differential
equation is integrated over non-overlapping regions Vi ⊂ Ω,

⋃
Vi = Ω around

the mesh points xi, leading to a system of equations∫
Vi

(
∑

j∂
2
j u+ bj∂ju+ cu+ f) dx = 0

3. In the Finite Element Method (FEM) the differential equation is multiplied
by a test function vh ∈ Vh and then integrated over Ω to get a system∫

Ω
(
∑

j∂
2
j u+ bj∂ju+ cu+ f)v dx = 0

The first two methods can be regarded as special cases of the finite element
method. A discretization based on the FDM is usually formulated starting from a
classical boundary value problem as shown at the beginning of this section. BIM
and FEM are particularly suited for equations in divergence form, and FEM is
obtained in a natural way for problems based on a variational formulation.

A short introduction to the FEM shall be given in the following (for a detailed
introduction and analysis see e.g. [29, 35, 27, 114], for a more pragmatic introduc-
tion [73]). For this purpose we start by stating an abstract linear variational prob-
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lem, which we shall assume to have a unique solution:

find u ∈ U such that
a(u, v) = f(v), ∀v ∈ V

(3.6)

The bilinear form a(u, v) : U × V → R and the linear form f(v) : V → R are
assumed to be continuous.

The discretization in a mathematical sense of the problem (3.6) consists in
approximating it in adequate finite-dimensional spaces Uh and Vh, such that the
discretized problem reads

find uh ∈ Uh such that
ah(uh, vh) = fh(vh), ∀vh ∈ Vh

(3.7)

The finite element method is essentially the construction of the latter spaces, then
called finite element spaces. Ususally, Uh is called solution space and Vh trial space.
Based on the different choices of Uh and Vh, different methods can be distinguished,
given in the following definitions.

Definition 3.1. When Uh = Vh, the method is called standard Galerkin method.
Otherwise it is called non-standard Galerkin or Petrov-Galerkin method.

Definition 3.2 (Conformity). When the finite-dimensional spaces Uh and Vh are
subspaces of the respective infinite-dimensional spaces, i.e. Uh ⊂ U and Vh ⊂ V ,
the method is called conformal. Otherwise it is called non-conformal.

Remark 3.1. If the bilinear form a(u, v) is symmetric and positive, i.e. a(u, v) =
a(v, u) > 0, the mathematical treatment of the problem is somewhat easier. Prob-
lem (3.6) is in this case associated to a minimization problem

J : v → J(v) = 1
2a(v, v)− f(v)

Problem (3.6) is then termed variational formulation. �

Remark 3.2. Strictly speaking, only methods where the discretized bilinear form
is equal to the original one, i.e. ah(u, v) = a(u, v), are considered as conformal meth-
ods. Therefore, when a(u, v) has to be approximated e.g. by numerical integration,
the resulting method is often regarded as non-conformal. �

Remark 3.3. Consider the case of a conformal standard Galerkin method for a
linear problem with symmetric bilinear form. Then a Hilbert spaceH can be defined
such that the bilinear form defines a scalar product on H. Choosing Uh = Vh ⊂ H it
can be seen that uh ∈ Vh is the projection of u onto the finite dimensional subspace
Vh and the approximation error u− uh lies in the orthogonal complement of Vh in
H. In other words, the discrete solution uh is the best-approximating element in
Vh to u. �
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As a practical example for the abstract problem (3.6) we consider the following
forms for a(u, v) and f(v)

a(u, v) =
∫

Ω
∇u · ∇v dx, f(v) =

∫
Ω
f(x) v dx (3.8)

such that problem (3.6) becomes

find u ∈ U such that∫
Ω
∇u · ∇v dx =

∫
Ω
f(x) v dx, ∀v ∈ V

(3.9)

Without considering the mathematical intricacies, we formally apply Green’s for-
mula to the above equation to get

−
∫

Ω
(∆u+ f) v dx+

∫
∂Ω

(∇u · ν)v dx = 0, ∀v ∈ V (3.10)

where ν denotes the outward normal on ∂Ω. Thus we are led to the conclusion that
by solving the problem (3.9) one is formally solving the associated boundary value
problem {

−∆u = f(x) on Ω
∇u · ν = 0 on ∂Ω

(3.11)

We can also invert the argumentation and start from this boundary value prob-
lem [40]. Then, applying Green’s formula, we are led to (3.9) which is then called
the weak form of (3.11). The solution u is accordingly called weak or generalized
solution. The approach as described before is especially suited for problems where
the principal part of the differential operator is in divergence form, such as

Lu = −∂i

(
aij∂ju+ biu

)
+ ci∂iu+ du (3.12)

the weak form of it reading (under rather weak smoothness assumptions for the
coefficients)

L(u, v) =
∫

Ω

[(
aij∂ju+ biu

)
∂iv +

(
ci∂iu+ du

)
v
]

dx, ∀v ∈ C1
0 (Ω) (3.13)

where C1
0 (Ω) is the space of continuously differentiable functions vanishing on ∂Ω.

A boundary value problem in weak form allows for solutions from a broader
class of functions than its classical (“strong”) counterpart. In particular, the dif-
ferentiations in (3.12) can be understood in a weak (distributional) sense. The
general theory for weakly differentiable functions is naturally formulated in the
Sobolev spaces Wm,p and Wm,p

0 , and the most useful spaces for the treatment of
second-order partial differential equations are the Hilbert spaces H1 = W 1,2 and
H1

0 = W 1,2
0 (cf. [40,29,35], [1] for the theory on Sobolev spaces).
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We are now able to write down a“recipe” for the construction of a finite element
formulation for some (linear) boundary value problem

Lu = 0 on Ω
∇u · ν = g(x) on ΓN ⊂ ∂Ω
u = f(x) on ΓD ⊂ ∂Ω, ΓD ∩ ΓN = ∅

(3.14)

1. Based on the form of L and on the boundary conditions, choose appropriate
spaces U and V

2. Choose appropriate finite element spaces Uh = span{ϕi} and Vh = span{ψi}

3. Multiply (3.14) by a trial function vh = ψi ∈ Vh and integrate over Ω

4. Apply Green’s formula to get rid of second derivatives

5. Expand uh as cjϕj and write down the resulting linear algebraic system

Applying this procedure to our model problem (3.11) leads to

cj
∫

Ω
∇ψi · ∇ϕj dx =

∫
Ω
f(x)ψi dx (3.15)

which can be written as a linear algebraic equation for the expansion coefficients cj

Kijc
j = fi

with Kij =
∫

Ω
∇ψi · ∇ϕj dx, fi =

∫
Ω
f(x)ψi dx

(3.16)

This is formally nothing else than a generalized Fourier expansion of (3.14).
The construction of finite element spaces always includes the following three

basic aspects, which distinguish the finite element method from other approaches
and which are fundamental for the numerical analysis and implementation [29]:

(FEM 1) A triangulation Th is defined on the set Ω̄, i.e. Ω̄ is subdivided into a
finite number of subsets K ∈ Th such that

• each K is closed and its interior K
◦

non empty

•
⋃
K = Ω̄, i.e. the subdivision K completely covers the set Ω̄

• for K1 6= K2, K
◦

1
⋂
K
◦

2 = ∅
• the boundary ∂K of each K is Lipschitz-continuous (see [29])

The subsets K are called finite elements.

(FEM 2) Let PK denote the space spanned by the restriction of the basis v ∈ Vh

to K, i.e. PK = span{vh|K; vh ∈ Vh}. The spaces PK shall contain polynomials
or functions “close” to polynomials.
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(FEM 3) There exists a basis in Vh and Uh formed by functions that can be easily
described and have supports as small as possible.

The aspect (FEM 1) is simply the mathematical formulation for the fact, that
the simulation domain Ω is discretized in a mesh formed by non-overlapping ele-
ments covering the whole domain and having certain regularity properties.

(FEM 2) assures a simple form for the integrals that have to be calculated and
is used for convergence analysis.

(FEM 3) finally assures that the finite element basis has near orthogonal proper-
ties, i.e. two basis functions have only overlapping support when they are associated
to neighbouring nodes. Usually, “neighbouring” in this context means “located on
the same element”. This is comparable to the nearest neighbour approximation in
localized basis methods such as the tight-binding method (cf. section 2.4.2) and
assures that the resulting matrices are sparse.

The main advantages of FEM over other methods are on the one hand it’s
ability to treat almost arbitrarily complex geometries due to the first aspect (FEM
1) of finite element space construction (although the same is valid for BIM). On
the other hand, it has a very sound mathematical foundation which allows for clear
convergence and error analysis. The latter in particular opens the possibility for use
of adaptive mesh refinement schemes. In addition, the integrals over the domain Ω
can be decomposed into a sum of integrals over the finite elements Kl

Kij =
∑
Kl∈Th

∫
Kl

∇ψi · ∇ϕj dx, fi =
∑
Kl∈Th

∫
Kl

f(x)ψi dx (3.17)

and the near-orthogonality assures that only a small number of basis functions
(usually only the ones that are associated to a node of the element to integrate
over) lead to non-vanishing integrals.

The integrations (3.17) are usually not calculated directly in the original co-
ordinates x. Each finite element K ∈ Th is mapped onto an equivalent reference
element instead, on which the calculations can be done in an easier way. The linear
mapping for an element K is defined by

FK : ξ ∈ Rn 7→ x ∈ K (3.18)

Fig. 3.1 illustrates the triangular case. In many cases the above transformation is
affine, e.g. for triangles or rectangles. It then can be written as x = BKξ + bK,
where BK and bK are an invertible n× n matrix and a vector in Rn, respectively.

General details about the numerical implementation of FEM will be given in
section 3.3.3, if needed for our application. In the next section we will rewrite the
drift-diffusion equations in weak form, analyze some basic mathematical properties
and describe the solution approach adopted in TIBERCAD.

3.3.2 The drift-diffusion equations in weak form

The aim of this section is to reformulate the system of equations (3.3), restated
below for clarity, in weak form to analyze some of it’s properties, to illustrate it’s
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Figure 3.1: The reference element for a triangular finite element.

solution using a Newton-like approach and to prepare the application of the finite
element method:

−∇
[
λ2εr(r)∇ϕ− P (r)

]
= ρ(r, ϕ, φn, φp) (3.19a)

−∇ [µn(r)n(r, ϕ, φn)∇φn] = R(r, ϕ, φn, φp) (3.19b)
−∇ [µp(r)p(r, ϕ, φp)∇φp] = −R(r, ϕ, φn, φp) (3.19c)

where ρ = p−n+Nd
+−Na

− is the scaled total charge density. In the above equa-
tions we evidenciated the dependence of the different parameters on the variables
to point out the nonlinear character of the system. In the following we will write x
instead of r for the space coordinates.

Remark 3.4. All equations in (3.19) are in divergence form. The Poisson equa-
tion (3.19a) is semilinear in ϕ and equations (3.19b, 3.19c) are quasi-linear in φn

and φp, respectively. �

We now restate the system (3.19) in weak form according to what has been
introduced in section 3.3.1 by multiplying each of the equations by a test function
v ∈ H1(Ω) and integrating over the domain Ω. To not overload the equations,
we will omit from now on the arguments in the different functions. We get, after
applying Green’s formula∫

Ω

(
λ2εr∇ϕ− P

)
· ∇v dx−

∫
∂Ω

(
λ2εr∇ϕ− P

)
· νv dx =

∫
Ω
ρv dx (3.20a)∫

Ω
(µnn∇φn) · ∇v dx−

∫
∂Ω

(µnn∇φn) · νv dx =
∫

Ω
Rv dx (3.20b)∫

Ω
(µpp∇φp) · ∇v dx−

∫
∂Ω

(µpp∇φp) · νv dx = −
∫

Ω
Rv dx (3.20c)

where ν is the outer normal on ∂Ω as in the last section. The boundary integrals
will serve to impose von Neumann or mixed-type boundary conditions. For the
following, we assume boundary conditions such that the boundary integrals vanish,
corresponding to homogeneous von Neumann boundary conditions. Other bound-
ary conditions will be treated later on. We note, however, that at least one Dirichlet



3.3 The drift-diffusion equations in finite element formulation 55

boundary condition has to be imposed on a part of the boundary ΓD ⊂ ∂Ω with
strictly positive measure. So we complete the system (3.20) with some Dirichlet
boundary conditions

ϕ
∣∣
ΓD

= ϕD, φn

∣∣
Γ ′

D
= φD

n , φp

∣∣
Γ ′′

D
= φD

p (3.21)

From the system (3.20) we can identify the forms a(u, v) and f(v) introduced
in the last section as listed here:

aϕ(ϕ, v) = λ2

∫
Ω

(εr∇ϕ) · ∇v dx, fϕ(v) =
∫

Ω
(ρv + P · ∇v) dx .= f(v)

aφn(φn;φn, v) =
∫

Ω
(µnn∇φn) · ∇v dx, fφn(v) =

∫
Ω
Rv dx .= g(v)

aφp(φp;φp, v) =
∫

Ω
(µpp∇φp) · ∇v dx, fφp(v) = −fφn(v) = −g(v)

It has to be noted that only aϕ(ϕ, v) is a symmetric bilinear form, whereas the
forms aφn(φn;φn, v) and aφp(φp;φp, v) are non-symmetric and nonlinear, which is
evidenciated using a special notation. The f•(v) are obviously all nonlinear in ϕ,
φn and φp.

Before considering possible solution methods we shall state some properties of
the system (3.20).1 From (3.19) we can easily see that we are faced with a (quasi-
linear) system of equations in divergence form. The single equations can be written
in the form

Q(u, v) .=
∫

Ω
[A(x, u,∇u)∇v −B(x, u)v] dx = 0 (3.22)

We make the following

Assumption 3.1.
(i) We assume for the moment that the mobilities depend only on position,

excluding especially velocity saturation models which would introduce some math-
ematical problems [65]. Furthermore, µn and µp shall be essentially bounded away
from zero, i.e.

0 < µ
n,p

≤ µn,p ≤ µn,p <∞ (3.23)

(ii) The function B shall not depend on the gradients of the solutions, assuming
ρ = ρ(x, ϕ, φn, φp) and R = R(x, n, p) = g(x, n, p)(np − n2

i ) with g ≥ 0. Note that
the latter excludes generation by impact ionization from our mathematical analysis.
ρ and R shall be continuously differentiable with respect to ϕ, φn, φp

(iii) The Dirichlet boundary conditions (3.21) shall be essentially bounded, i.e.

(ϕD, φD
n , φ

D
p ) ∈ (L∞(∂Ω))3 (3.24)

�
1Detailed mathematical analyses of the drift-diffusion system can be found amongst others in

in [74,66,65].
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In principle there would be other assumptions, e.g. about the regularity of the
domain Ω and the doping profile, which are not explicitly stated here [65].

Assumption (i) assures that the operators are uniformly elliptic. Assumption
(iii) assures that the solution (ϕ, φn, φp) ∈ (H1)3 we are seeking is essentially
bounded and therefore lies in (H1∩L∞)3, which is in fact necessary for a physically
meaningful solution.

We rewrite A as

A(x, u,∇u) = α(x, u)∇u
with

αϕ(x, ϕ) = εr(x)

αφn(x, φn) = µn(x)n(x, φn)

αφp(x, φp) = µp(x)p(x, φp)

(3.25)

From the above it is concluded that (i) 0 < α ≤ α(x, u) ≤ α < ∞ in Ω,
assuming u ∈ H1 ∩ L∞ and µn,p, εr > 0, and (ii) A(x, u,∇u) and B(x, u) are
continuously (Fréchet) differentiable with respect to u and ∇u, which can be easily
seen by examining their functional form. It follows from (i) that all Q are uniformly
elliptic.

For the following description we decouple the system and consider every equa-
tion on its own. The case of the semilinear Poisson equation is rather simple. Noting
that B = ρ and using the usual expressions for the densities of free carriers and
ionized dopants it follows that B is monotonically decreasing in ϕ, i.e. ∂ϕρ < 0 for
any given φn, φp. With this a comparison principle for the Poisson equation can be
derived which assures existence and uniqueness of the solution (alternativley, upper
and lower bounds for ϕ can be found which correspond to super- and subsolutions
of the equation and for uniqueness use the maximum principle for g = ϕ1 − ϕ2,
see [65]). In a similar way a comparison principle can be obtained also for the con-
tinuity equations, provided that the recombination rates satisfy certain hypotheses
(see Appendix C for some more details). It should be noted, however, that al-
though the single equations satsify a comparison principle, this is by no means
automatically the case also for the system of equations [21].

The fact that the continuous problem meets a comparison or a maximum prin-
ciple should be reflected in the discretized system in order to obtain a numerically
stable discrete problem. The discrete analogue of a comparison or maximum prin-
ciple is the M -matrix property [69,65]:

Definition 3.3. An M -matrix is a nonsingular matrix A with (A)ij ≤ 0, ∀i 6= j
and (A−1)ij ≥ 0.

A discretization which does not produce an M -matrix can lead to unphysical
oscillations in the solution. This is for example the case for a standard finite differ-
ence or finite element discretization of the continuity equations when the densities
are used as variables (see e.g. [72,94]).
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To study the solution approaches for the nonlinear system (3.20) we rewrite it
in a different, more compact form as

F (ϕ, φn, φp) =

 Fϕ(ϕ, φn, φp)
F φn(ϕ, φn, φp)
F φp(ϕ, φn, φp)

 =

 aϕ(ϕ, v)− f(v)
aφn(φn;φn, v)− g(v)
aφp(φp;φp, v) + g(v)

 = 0

(3.26)

i.e. we are seeking the root of a nonlinear system of equations. This system can
formally be solved using a Newton method [15, 88]. Starting from an initial guess
ϕ(0), φ(0)

n and φ(0)
p , we try to find corrections δu, δv, and δw such that

F (ϕ(0) + δu, φ(0)
n + δv, φ(0)

p + δw) = 0 (3.27)

We linearize F around (ϕ(0), φ
(0)
n , φ

(0)
p ) and write

F (0) + Fϕδu+ Fφnδv + Fφpδw = 0 (3.28)

where F (0) is short for F (ϕ(0), φ
(0)
n , φ

(0)
p ) and Fϕ, Fφn and Fφp are the Fréchet

derivatives of F at (ϕ(0), φ
(0)
n , φ

(0)
p ), formally given by e.g. Fϕ = ∂F /∂ϕ [40]. Note

that the latter are linear operators acting on δu, δv and δw. The solution of
eq. (3.28) gives a new guess, which hopefully is better than the old one. The method
can formally be written as, using (3.26) and using the index k to enumerate the
iterations  Fϕ

ϕ Fϕ
φn

Fϕ
φp

F φn
ϕ F φn

φn
F φn

φp

F
φp
ϕ F

φp

φn
F

φp

φp


(k−1)δuδv

δw

(k)

= −

 Fϕ

F φn

F φp

(k−1)

(3.29)

with the update rule

ϕ(k) = ϕ(k−1) + δu(k), φ(k)
n = φ(k−1)

n + δv(k), φ(k)
p = φ(k−1)

p + δw(k) (3.30)

The matrix in (3.29) is the Jacobian of the system (3.26), and the vector F is
called the residual. Note once again that (3.29) is only a formal notation, as the
Jacobian is a matrix of linear operators acting on the elements of the update vector
(δu, δv, δw)(k).

The Newton method is known to show quadratic convergence, provided the
starting guess is sufficiently near to the true solution. This can be a problem, as in
most cases one cannot guarantee to find such a guess. However there are modified
approximate Newton methods that are globally convergent [15].

Principally there are two possibilities how to discretize eq. (3.27). Either the
residual is discretized and then the Jacobian is calculated from the discretized
system, or eq. (3.29), i.e. the Jacobian in operator form is discretized. The second
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method is preferable, as it allows to see the operatorial form of the Jacobian and
therefore the appropriate type of discretization can be chosen [16]. Moreover, it
can suggest block-iterative solution approaches which cannot be easily seen in the
other way. We therefore write down explicitly the Jacobian in operatorial form to
be able to analyze its mathematical and numerical properties.

Using (3.20) and (3.26) we get for the Jacobian (omitting the boundary terms)

J =

 aϕ
ϕ 0 0

aφn
ϕ aφn

φn
0

a
φp
ϕ 0 a

φp

φp

+

−fϕ −fφn −fφp

−gϕ −gφn −gφp

gϕ gφn gφp

 (3.31)

To simplify, we divide it into two parts, one originating from the right hand side
and the other one from the left hand side. The Jacobian has an obvious block
structure, and we will in the following explicitly write down every block.

Before doing so, we first remember that ρ = p−n+Nd
+−Na

−. Next, we make
a few assumptions about the carrier densities and the ionized dopant densities.
From section 2.2.1.1 we already know, that n and p are of the form n = n(ϕ− φn)
and p = p(ϕ − φp) and therefore ∂φnn = −∂ϕn and ∂φpp = −∂ϕp, respectively.
Assuming for the densities of ionized dopants the following expressions [96,56]

Nd
+ =

Nd

1 + gd exp
(

ϕ−φn−Ec+∆Ed
kBT

) (3.32a)

Na
− =

Na

1 + ga exp
(

φp−ϕ+Ev+∆Ea

kBT

) (3.32b)

we also get ∂φnNd
+ = −∂ϕNd

+ and ∂φpNa
− = −∂ϕNa

−.

Using the above assumptions, the first part of the Jacobian (3.31) gets

aϕ
ϕδu = λ2

∫
Ω

(εr∇δu) · ∇v dx (3.33a)

aφn
ϕ δu =

∫
Ω

(
µn
∂n

∂ϕ
δu∇φn

)
· ∇v dx (3.33b)

aφn

φn
δv =

∫
Ω

(
µnn∇δv − µn

∂n

∂ϕ
δv∇φn

)
· ∇v dx (3.33c)

a
φp
ϕ δu =

∫
Ω

(
µp
∂p

∂ϕ
δu∇φp

)
· ∇v dx (3.33d)

a
φp

φp
δw =

∫
Ω

(
µpp∇δw − µp

∂p

∂ϕ
δw∇φp

)
· ∇v dx (3.33e)
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For the second part we obtain

fϕδu =
∫

Ω

∂ρ

∂ϕ
δu v dx =

∫
Ω

(
∂p

∂ϕ
− ∂n

∂ϕ
+
∂Nd

+

∂ϕ
− ∂Na

−

∂ϕ

)
δu v dx (3.34a)

fφnδv =
∫

Ω

∂ρ

∂φn
δv v dx =

∫
Ω

(
∂n

∂ϕ
− ∂Nd

+

∂ϕ

)
δu v dx (3.34b)

fφpδw =
∫

Ω

∂ρ

∂φp
δw v dx =

∫
Ω

(
− ∂p
∂ϕ

+
∂Na

−

∂ϕ

)
δw v dx (3.34c)

gϕδu =
∫

Ω

∂R

∂ϕ
δu v dx =

∫
Ω

(
∂R

∂n

∂n

∂ϕ
+
∂R

∂p

∂p

∂ϕ

)
δu v dx (3.34d)

gφnδv =
∫

Ω

∂R

∂φn
δv v dx = −

∫
Ω

∂R

∂n

∂n

∂ϕ
δv v dx (3.34e)

gφpδw =
∫

Ω

∂R

∂φp
δw v dx = −

∫
Ω

∂R

∂p

∂p

∂ϕ
δw v dx (3.34f)

Note that fϕ + fφn + fφp = 0 and gϕ + gφn + gφp = 0.
We finally write down the first part of the Jacobian for the case of Boltzmann

statistics, where ∂ϕn = n (in scaled quantities), which allows to rewrite some of the
expressions (3.33). We use the symbol • as a placeholder for the arguments of the
linear operators.

Ja =



λ2

∫
Ω

(εr∇•) · ∇v dx 0 0

∫
Ω

(µnn • ∇φn) · ∇v dx

∫
Ω
(µnn∇ • −

µnn • ∇φn) · ∇v dx
0

∫
Ω

(−µpp • ∇φp) · ∇v dx 0

∫
Ω
(µpp∇ •+

µpp • ∇φp) · ∇v dx



=



λ2

∫
Ω

(εr∇•) · ∇v dx 0 0

∫
Ω
(jn · ∇v) • dx

∫
Ω
(µnn∇ • −

• jn) · ∇v dx
0

∫
Ω
(jp · ∇v) • dx 0

∫
Ω
(µpp∇ • −

• jp) · ∇v dx


(3.35)
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For comparison and future reference we write down the corresponding matrix
for the case where the densities are used as dependent variables (see [4]):

J ′
a =



λ2

∫
Ω

(εr∇•) · ∇v dx 0 0

∫
Ω
(µnn∇•) · ∇v dx

∫
Ω
µn(∇ •+ • E) · ∇v dx 0

∫
Ω
(µpp∇•) · ∇v dx 0

∫
Ω
µp(∇ • − • E) · ∇v dx


(3.36)

We notice quite a similar structure with respect to the diagonal blocks in the sense
that in both cases the blocks corresponding to the linearized continuity equations
are of convection-diffusion form. This fact will be considered in the next section
when discretizing the Jacobian.

For the sake of completeness, we write down the complete Jacobian on p. 61.

3.3.3 Application of FEM to the drift-diffusion equations

The application of the finite element method to the semiconductor equations dates
back to the early nineteen-eighties [96,71]. It was not widely used, however, as the
standard Galerkin method applied to the continuity equations with the densities as
dependent variables leads to an unstable system for not sufficiently refined meshes
(as is the case for a standard finite difference discretization). This is due to the
convection-diffusion nature of the equations, whose standard discretization fails to
satisfy a discrete maximum principle, and is reflected in the fact, that the system
matrix is not an M -matrix, unless the discretization mesh is very fine in regions
of high electric field. The consequence of this are spurious oscillations, which can
completely spoil the solution. This situation can be very easily demonstrated in
a 1D test case [76, 96, 65, 94]. For this reason, FEM was usually considered as
unsuccessful for semiconductor device simulation.

Subsequently, however, many methods have been proposed to get a stable
FEM discretization by generalizing the Scharfetter-Gummel approach to a FEM
setup [109, 23, 43, 102] or by using upwinding schemes [70, 103, 76]. In the mathe-
matical comunity especially mixed finite element methods are considered, in which
the equations of second order are written as a system of first order equations by
introducing the particle fluxes as additional variables [22,72].

We shall apply Galerkin’s method to the linearized system (3.29). From the
considerations made in section 3.2 we choose a standard Galerkin approach with
H1-conforming Lagrange elements. The basis functions, denoted by ψi(x), in this
case are the piecewise linear functions{

ψi ∈ H1
∣∣∣ψi(xj) = δij , supp{ψi} =

⋃
j

xi∈Kj

Kj ∈ Th

}
, (3.37)
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J
=

                            ∫ Ω

[ λ
2
(ε

r
∇
•)
·∇

v

−
( ∂p ∂

ϕ
−
∂
n

∂
ϕ

+
∂
N

d
+

∂
ϕ

−
∂
N

a
−

∂
ϕ

) •
v

] dx
−
∫ Ω

( ∂n ∂
ϕ
−
∂
N

d
+

∂
ϕ

) •
v

dx
−
∫ Ω

( −
∂
p

∂
ϕ

+
∂
N

a
−

∂
ϕ

) •
v

dx

∫ Ω

[ (µ
n
n
•
∇
φ

n
)
·∇

v

−
( ∂R ∂

n

∂
n

∂
ϕ

+
∂
R ∂
p

∂
p

∂
ϕ

) •
v

] dx

∫ Ω

[ (µ
n
n
∇
•
−
µ

n
n
•
∇
φ

n
)
·∇

v

+
∂
R

∂
n

∂
n

∂
ϕ
•
v

] dx

∫ Ω

∂
R ∂
p

∂
p

∂
ϕ
•
v

dx

∫ Ω

[ (−
µ

p
p
•
∇
φ

p
)
·∇

v

+
( ∂R ∂

n

∂
n

∂
ϕ

+
∂
R ∂
p

∂
p

∂
ϕ

) •
v

] dx
−
∫ Ω

∂
R

∂
n

∂
n

∂
ϕ
•
v

dx

∫ Ω

[ (µ
p
p
∇
•

+
µ

p
p
•
∇
φ

p
)
·∇

v

−
∂
R

∂
n

∂
n

∂
ϕ
•
v

] dx

                            
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i.e. they are continuous across the element boundaries and they are one at the
node they are associated with and zero on any other node. They clearly have
“small” support in the sense of aspect (FEM 3) described in the last section. These
functions, also called hat functions, are illustrated in Fig. 3.2. In the 1D-case, the

ψ
i

i−1 i+1 ......

1

i
x

ψ
i

x

1

y

i

Figure 3.2: The basis functions of 1st-order Lagrange elements in 1D and
2D (hat functions).

finite elements are just the line segments connecting two neighbouring nodes. In
the 2D-case in this example, they are formed by triangles, and the support for the
i-th basis function is the union of the triangles containing the i-th node.

The expansions for the dependent variables in terms of the basis function is
written as

ϕh(x) = uiψi(x) (3.38a)

φn,h(x) = viψi(x) (3.38b)

φp,h(x) = wiψi(x) (3.38c)

where we used the Einstein summing convention for ease of notation. With the
basis (3.37) the degrees of freedom (i.e. the unknowns of the discretized system ui,
vi and wi) coincide with the values of the dependent variables at the mesh nodes.

Following Galerkin’s method we choose for the test functions vh = ψi. First, we
calculate the residual of the discretized system:

Fϕ
h =

∫
Ω

(
λ2εr∇ϕh − P

)
· ∇ψi dx−

∫
∂Ω

(
λ2εr∇ϕ− P

)
· νψi dx−

∫
Ω
ρhψi dx

(3.39a)

F φn

h =
∫

Ω
(µn,hnh∇φn,h) · ∇ψi dx−

∫
∂Ω

(µnn∇φn) · νψi dx−
∫

Ω
Rhψi dx (3.39b)

F
φp

h =
∫

Ω
(µp,hph∇φp,h) · ∇ψi dx−

∫
∂Ω

(µpp∇φp) · νψi dx+
∫

Ω
Rhψi dx (3.39c)



3.3 The drift-diffusion equations in finite element formulation 63

or, symbolically,

Fϕ
h = aϕ(ϕh, ψi)−

∫
∂Ω

(· · · )ψi dx− fh(ψi) (3.40a)

F φn

h = aφn

h (φn,h;φn,h, ψi)−
∫

∂Ω
(· · · )ψi dx− gh(ψi) (3.40b)

F
φp

h = a
φp

h (φp,h;φp,h, ψi)−
∫

∂Ω
(· · · )ψi dx+ gh(ψi) (3.40c)

Note that all quantities depending on the dependent variables become approxima-
tions for the original expressions and get therefore labeled with the index h.

When substituting the expansions (3.38) into the above expressions, (3.40) can
be written as

F =

 Fϕ
h

F φn

h

F
φp

h

 =

Ku 0 0
0 Kv 0
0 0 Kw


︸ ︷︷ ︸

K

uv
w

−

 fh

gh

−gh

 (3.41)

with

Ku
ij = aϕ(ψj , ψi), Kv

ij = aφn

h (φn,h;ψj , ψi), Kw
ij = a

φp

h (φp,h;ψj , ψi) (3.42)

We omitted the boundary terms for brevity in the above equations. The matrix
K in (3.41) is the stiffness matrix of the system and has block-diagonal form. We
note that K is an M -matrix whenever

∫
∇ψi∇ψj is an M -matrix, or at least in

the case (in 2D) when there is no triangular element with obtuse angle or rectangle
with aspect ratio >

√
2. In other words, the M -property of K depends on the mesh

but not on the physical data or the solution. This is in contrast to a discretization
of the continuity equation with the density as variable, where the system matrix
can become non-M -matrix due to high electric fields. This will be illustrated below
when descretizing the Jacobian.

As K depends on the solution itself, the system (3.41) is a nonlinear system
of order 3N , where N = dim(Vh). This system can be solved using a Newton or
approximate Newton method. We will follow what was mentioned in the last section
and not calculate the Jacobian from (3.41) but rather discretize the Jacobian as
given in (3.35).

In each Newton step we have to solve the linear system (cf. section 3.3.2)

J (k−1)

δuδv
δw

(k)

= −F (k−1)

uv
w

(k)

=

uv
w

(k−1)

+ tk

δuδv
δw

(k)
(3.43)
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We introduced a relaxation parameter tk to underline the fact that usually a mod-
ified Newton method with adaptive tk is used [16,105]. For the discretization of J
we expand δu, δv and δw in the same way as u, v and w in (3.38). The contribution
resulting from the stiffness matrix can immediately be written down, using (3.35)

Ja =



λ2

∫
Ω
∇ψi · (εr∇ψj) dx 0 0

∫
Ω
(jn · ∇ψi)ψj dx

∫
Ω
∇ψi · (µnn∇ψj−

jnψj) dx
0

∫
Ω
(jp · ∇ψi)ψj dx 0

∫
Ω
∇ψi · (µpp∇ψj−

jpψj) dx


(3.44)

Note that the above expression does not have any terms involving derivatives of the
mobility as in the last section we considered only space-dependent mobility models.
However, mobility models depending on the electric field are important in many
cases and are therefore implemented in the software. It was found that omitting the
necessary modifications of the Jacobian only slightly affects convergence behaviour.
On p. 65, we once again state the complete Jacobian matrix to reveal some of its
properties.

The Jacobian is usually not an M -matrix. This means that (3.43) is not mono-
tone. Several techniques such as special integration rules or upwinding could be
applied to increase the diagonal dominance or even transform the Jacobian into
an M -matrix. Some of these techniques can be formulated in the framework of
the finite element methods [37]. Such measures often change the Jacobian, leading
explicitly to an approximate Newton scheme where the matrix J in (3.43) is only
an approximation of the true Jacobian. The gain in stability is therefore expected
to implicate a loss of convergence speed. For this reason, and because in most
practical cases no negative effect of the matrix properties on convergence has been
observed, in TIBERCAD the Jacobian is implemented in TIBERCAD as given on
p. 65 without further manipulation (apart from scaling).

The block-structure of the Jacobian could be utilized for a block-iterative method
to solve eq. (3.43). For this purpose, the diagonal blocks of the Jacobian could be
assembled in such a way that they have the M -property. Although this hasn’t been
done we shall make some comments about it.

We note that the operators on the diagonal of (3.44) (or (3.35)) are of convection-
diffusion type, but with an important difference with respect to (3.36), where the
densities are used as dependent variables. We illustrate this with the electrons,
using the continuous equations:∫

Ω
µnn(∇ζ − ζ∇φn)∇v dx⇐⇒

∫
Ω
µn(∇ξ − ξ∇ϕ)∇v dx
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J
=

                            ∫ Ω

[ λ
2
∇
ψ

i
·(
ε r
∇
ψ

j
)

−
( ∂p ∂

ϕ
−
∂
n

∂
ϕ

+
∂
N

d
+

∂
ϕ

−
∂
N

a
−

∂
ϕ

) ψ
iψ

j

] dx
−
∫ Ω

( ∂n ∂
ϕ
−
∂
N

d
+

∂
ϕ

) ψ
iψ

j
dx

−
∫ Ω

( −
∂
p

∂
ϕ

+
∂
N

a
−

∂
ϕ

) ψ
iψ

j
dx

∫ Ω

[ (j
n
·∇

ψ
i)

−
( ∂R ∂

n

∂
n

∂
ϕ

+
∂
R ∂
p

∂
p

∂
ϕ

) ψ
i] ψ

j
dx

∫ Ω

[ ∇
ψ

i
(µ

n
n
∇
ψ

j
−

j n
ψ

j
)

+
∂
R

∂
n

∂
n

∂
ϕ
ψ

iψ
j

] dx

∫ Ω

∂
R ∂
p

∂
p

∂
ϕ
ψ

iψ
j
dx

∫ Ω

[ (j
p
·∇

ψ
i)

+
( ∂R ∂

n

∂
n

∂
ϕ

+
∂
R ∂
p

∂
p

∂
ϕ

) ψ
i] ψ

j
dx

−
∫ Ω

∂
R

∂
n

∂
n

∂
ϕ
ψ

iψ
j
dx

∫ Ω

[ ∇
ψ

i
·(
µ

p
p
∇
ψ

j
−

j p
ψ

j
)
·∇

v

−
∂
R

∂
n

∂
n

∂
ϕ
ψ

iψ
j

] dx

                            
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where on the left we have written the formulation in (ϕ, φn) and on the right
in (ϕ, n), and ζ and ξ denote the unknown functions. Apart from the possibly
exponentially varying factor n, the main difference between the two formulations is
given by the driving force of the convection. In the standard formulation using the
densities as variables, the latter is given by the electric field whereas in our case
it is given by the gradient of the electro-chemical potential. While in almost all
practical cases the electric field can get very big (e.g. in space-charge regions), the
electro-chemical potential is a much smoother quantity and only at heterointerfaces
it can be expected to have big gradients (cf. section 3.2).

Consider a 1D case, assuming constant electron flux j and using finite differences
in the point with index i (setting µn = 1, using scaled quantities and letting h be
the constant mesh spacing)

−∇(n∇ζ − jζ) = f

⇓

−1
h

(ni− 1
2

h
+
j

2

)
ζi−1 +

ni− 1
2

+ ni+ 1
2

h2
ζi −

1
h

(ni+ 1
2

h
− j

2

)
ζi+1 = fi

ni± 1
2

denote the densities in the center between the nodes i and i+ 1 and i− 1 and
i, respectively. From the above we find the condition for the discretization to be
stable (for j > 0):

ni+ 1
2

h
>
j

2
⇒ h <

2ni+ 1
2

j
=

2
∇φn,i+ 1

2

where we have written the current as j = ni+ 1
2
∇φn,i+ 1

2
. This means that the

electro-chemical potential should change less than one half of the thermal voltage
in one element. This should be compared with the corresponding condition when the
density is used as variable, where the electric potential should change less than one
half of the thermal voltage in one element, which is usually much more restrictive
on the mesh size.

The calculation of the matrix elements of the Jacobian involves integrations over
potentially fast changing quantities. The integrals appearing in (3.44) could prin-
cipally be evaluated analytically. The same is not true in general for the integrals
resulting from the right-hand side. Currently the implementation in TIBERCAD
uses a numerical Gauss integration for all integrals. Therefore the discretization as
a whole can be regarded as non-conforming.

Up to now we did not address the conditioning of the jacobian. As has already
been mentioned before (cf. section 3.2), the operators in the continuity equations
are not well conditioned with our choice of variables. This fact leads to an ill-
conditioned Jacobian which can result in convergence problems of the iterative
solvers needed to solve the linear system (3.29). The next section will address
conditioning in general and then propose a solution to produce a better scaled
matrix.
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3.3.4 Conditioning of the linearized system

The goal of this section is to examine the conditioning of the linearized semicon-
ductor equations (3.43), which amounts to estimate the condition number κ(J) of
the Jacobian J .

The conditioning of the drift-diffusion equations plays a crucial role for the
performance of numerical device simulations. An ill-conditioned system can lead
to very poor convergence properties or to instabilities or fail at all, because con-
ditioning governs the accuracy of the correction steps in the Newton algorithm.
Especially iterative solvers are sensitive to the conditioning of the system to be
solved [17]. There is quite a lot of literature treating under several aspects the con-
ditioning of the continuous semiconductor equations as well as of the discretized
system [4,66,65,10] and its effects on the numerics of the problem [32,17,44,95].

The overall conditioning of the discretized system depends on several factors:

physical conditioning With this we mean the “intrinsic” conditioning of the con-
tinuous equations. It depends on the type of operators, the physical de-
vice properties (e.g. device diameter, intrinsic densities, device structure) and
bias conditions (near breakdown e.g. the system becomes ill-conditioned as it
moves towards a singularity).

numerical conditioning This includes effects of numerical calculations, i.e. the
evaluation of the residual and the machine precision.

scaling The scaling of the system can be regarded as a preconditioning of the
system. As such it influences the conditioning, and a proper scaling can
reduce the condition number.

discretization The discretization, i.e. the mesh, plays an important role for the
conditioning because shape and size of the elements together with device size
affect directly the condition number of the Jacobian of the system.

Usually the user has no or little influence on the first three factors when using a
device simulator, but the mesh is mostly user dependent. Finding a mesh of good
quality with as little as possible nodes can be essential for a successful simula-
tion [10].

Consider some function f(x) ∈ V (Ω) : Ω 7→ Ω′ where Ω ⊂ Rn, Ω′ ⊂ Rm. We
define the functional C(x) : Ω 7→ R

C(x) = sup
x′∈Bε(x)

(
‖f(x′)− f(x)‖Ω′

‖f(x)‖Ω′

/
‖x′ − x‖Ω

‖x‖Ω

)
, (3.45)

where Bε(x) ⊂ Ω is a ball around x with (small) radius ε > 0. We can interpret
this quantity as the (local) amplification factor of the relative error in the “input
data” x, i.e. the relative error of the “output” devided by the relative error of the



68 3 Numerical Implementation of the Drift-Diffusion Model

“input”. The condition number Cf of an operator f is then defined as the upper
bound of C(x), i.e.

Cf = sup
x∈Ω

C(x) (3.46)

A well conditioned operator has a condition number near 1.
More specifically we consider the case of a differentiable function f(x) ∈ C1(Ω) :

R 7→ R. In this case (3.45) simplifies in the limit ε→ 0 to

C(x) =
∣∣∣∣f(x′)− f(x)

x′ − x
· x

f(x)

∣∣∣∣ = ∣∣∣∣ x

f(x)
· df(x)

dx

∣∣∣∣ (3.47)

We will assume now that f(x) in (3.45) is a linear invertible operator Rn 7→ Rn

and write it as y := f(x) = Ax, where A is an invertible n × n Matrix. Now we
can calculate C(x) for the matrix multiplication as

C(x) = sup
x′∈Bε(x)

(
‖Ax′ −Ax‖

‖Ax‖

/
‖x′ − x‖
‖x‖

)
= sup

x′∈Bε(x)

(
‖A(x′ − x)‖
‖x′ − x‖

· ‖x‖
‖Ax‖

)
(3.48)

Remembering that the norm of a matrix A is defined as ‖A‖ = sup (‖Ax‖ / ‖x‖)
and considering the fact that the linearity of the matrix multiplication implies
‖A(αx)‖ / ‖αx‖ = ‖Ax‖ / ‖x‖, we are led to

C(x) = sup
‖x′‖<ε

‖Ax′‖
‖x′‖

· ‖x‖
‖Ax‖

= ‖A‖ ‖x‖
‖Ax‖

(3.49)

The condition number of the matrix multiplication is then according to (3.46) and
using y = A−1x

CA = sup
x

(
‖A‖ ‖x‖

‖Ax‖

)
= ‖A‖ · sup

y

∥∥A−1y
∥∥

‖y‖
= ‖A‖ ‖A−1‖ (3.50)

We call κ(A) = CA the condition number of the matrix A. For a symmetric matrix
and using the l2 norm the following relation holds

κ(A) =
∣∣∣∣λmax(A)
λmin(A)

∣∣∣∣ (3.51)

In a nonsingular linear system Ax = b, the sensitivity of the solution x with
respect to a perturbation in the data b or in the matrix A is closely related to the
condition number κ(A) of A [30,68].

Assume we are solving a nonlinear problem g(u) = 0 using a Newton-like method

g′(uk)x = −g(uk) (3.52)
uk+1 = uk + tkx (3.53)
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where we identify gk = g(uk) and g′k = g′(uk) with the residual and the Jacobian
at the kth step, respectively. The correction x is given by x = −(g′k)−1gk. The
condition number of this operation is given by the product CJCr, where CJ and
Cr are the condition numbers of the Jacobian and the residual, respectively. The
numerical accuracy of the correction x is therefore εx = CJCrεCPU where εCPU

means the machine accuracy, which is about 10−16 for double precision. Cr mea-
sures how correctly we evaluate the residual and depends on implementation details
of the models, on device type and biasing and is therefore difficult to estimate. CJ

is given by (3.50), once the system is discretized. It can be estimated apriori for
example in the sense that it will not be better than the condition number of a
simpler operator, e.g. the Laplace operator, discretized on the same grid [10].

In the following we will examine the conditioning of the high-order diagonal
terms of the jacobian (3.44). This part of the matrix corresponds to the system
matrix K of the discretized system:

K =


λ2

∫
Ω
∇ψi · (εr∇ψj) dx 0 0

0
∫

Ω
(µnn∇ψj) · ∇ψi dx 0

0 0
∫

Ω
(µpp∇ψj) · ∇ψi dx


(3.54)

The ill-conditioning of this matrix due to the dependence on the densities of the
terms corresponding to the continuity equations was already mentioned before. To
get a rough estimate of the condition number of K we approximate the integrals
in the following way. Consider a triangular mesh as given in Fig. 3.3. We now

i

j

mat A

mat B

Figure 3.3: A triangular mesh around node i which lies on the boundary
(indicated by the bold line) of two materials mat A and mat B.

define mean values for the integrands εr, µnn and µpp over the supports of the
basis functions supp(ψi), indicated in the figure by the shaded region, and denote
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them by (εr)i, (µnn)i and (µpp)i. With this, the system matrix (3.54) gets

K ≈


λ2(εr)i

∫
Ω
∇ψi · ∇ψj dx 0 0

0 (µnn)i

∫
Ω
∇ψi · ∇ψj dx 0

0 0 (µpp)i

∫
Ω
∇ψi · ∇ψj dx



=

λ2(εr)i 0 0
0 (µnn)i 0
0 0 (µpp)i


︸ ︷︷ ︸

D

·

KL 0
0 KL 0
0 0 KL


︸ ︷︷ ︸

K̃

(3.55)

where we denoted by KL the matrix of the discretized Laplace operator in weak
form, and D is a positive diagonal matrix. The condition number of K can therefore
be estimated as

κ(K) = κ(D)κ(K̃) =
max(λ2(εr)i, (µnn)i, (µpp)i)
min(λ2(εr)i, (µnn)i, (µpp)i)︸ ︷︷ ︸

γ

κ(KL) (3.56)

This means the condition number of the system matrix K increases by about a
factor of γ with respect to the condition number of the Laplace operator discretized
on the same mesh. It is especially critical for structures involving wide bandgap
materials where the carrier densities can get very low. Generally the carrier densities
can be estimated to lie between Nc,v exp(−Eg/kBT ) and ∼ 1020 cm−3.

Based on the above observations, a diagonal scaling has been implemented in
TIBERCAD. We denote the diagonal scaling matrix by D. The linear system (3.43)
that has to be solved in each step of the Newton algorithm is preconditioned using
D as follows:

Jx = −F

⇓
D−1Jx = −D−1F

(3.57)

In the practical implementation the preconditioning is not applied as matrix op-
eration but rather included directly during the assembly of Jacobian and residual.
For this purpose, the elements of D have to be precalculated before assembly as
they are not defined exclusively by element-local parameters. This is due to the
fact that a node can lie on the boundary of two materials as shown in Fig. 3.3.

There is no unique or “best” choice for D. We compare numerically a few
possibilities, using as an example a GaN pn-junction as shown in Fig. 3.4.

The first possible implementation (1) uses as scaling matrix the main diagonal
of the system matrix K:

D = diag(K) (3.58)
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GaN
4 µm × 2 µm
# nodes : 1321
# elements : 2514
Nd = 1018 cm−3

Na = 1019 cm−3

Figure 3.4: A simple GaN pn-diode.

where K is the system matrix given in (3.54).
The second implementation (2) adds to the scaling of the Poisson equation the

derivative of the total charge density as this term can dominate the corresponding
part of the Jacobian. We write D in symbolic form

D = diag(K)− diag(
∫

Ω

∂ρ

∂ϕ
ψ2

i dx, 0, 0) (3.59)

This approach is currently implemented in TIBERCAD.
The numerical performance of the different scaling schemes are summarized in

Table 3.2.

Scheme
– (1) (2)

condest 5.62 · 1021 2.56 · 108 1.06 · 107

Table 3.2: Numerical performance of different diagonal scaling schemes.
The scheme denoted by a dash (–) is the unconditioned Jacobian. condest
means the estimated condition number obtained in Matlab using the condest
command. The values are calculated for the Jacobian at 3.2 V.



Chapter 4

The TIBERCAD Software

4.1 Introduction

This chapter describes some implementation and usage details of TIBERCAD [85].
The TIBERCAD software is written in C++ for the following reasons:

• Its object-oriented features are well suited for the handling of complex data
structures, for the implementation of hierarchies of simulation models and for
their implementation independent handling (polymorphism).

• It can easily be intermixed with C to allow low level operations such as direct
access to shared libraries, which allows for a modularization of the software
package.

• It can interface to code written in other languages as Fortran without too
much problems.

• The most important library used in TIBERCAD, libMesh [55], which imple-
ments and handles all finite element specific details and data structures (mesh,
elements, integration rules etc.) is already written in C++.

4.2 Software structure

The structure of the TIBERCAD software is schematically shown in Fig. 4.1. The
implementation uses heavily the object-oriented features of C++. Especially poly-
morphism is used in creating model hierarchies with a common interface.

The core of TIBERCAD is formed by modules that implement the physical mod-
els described in chapter 2. Each module is self-contained in the sense that it does
not rely on implementation details of other modules but rather uses an abstract
common interface to communicate with other modules. This allows for a highly
modular software package that can be easily extended with new modules.

A control module manages the program flow. This task includes the creation
of all data structures needed to describe the device and its properties, the creation
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parser
input

control module

interface
file format database

interface

database

data
output

Interface to solver
libraries / iterative
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mesh
file

input
file

T CADIBER

drift−
diffusion

Physical models

...

strain
k*p

core

libMesh

Figure 4.1: Structure of the TIBERCAD software.

of the objects representing the physical models and coordination of the different
simulations.

The device description is based on two text files and a database (currently
implemented as a collection of flat text files). A mesh file describes the geometry of
the device in terms of physical (or geometrical) regions and the discretization mesh.
An input file contains the definitions of the materials and models to be assigned to
the different regions found in the mesh file, parameters for the solvers to be used,
type of simulations to be done and general configuration options. The database
finally contains all physical parameters needed for the different physical models.
This parameters can generally be overridden from the input file.

An input parser is responsible for the parsing of the input file.

External libraries are used for the numerical solution of the equation systems.
PETSc [13,12,14] is responsible for the solution of linear and nonlinear sparse sys-
tems, using iterative methods. SLEPc [45] solves standard and generalized eigen-
value problems and is based on PETSc.
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4.2.1 Mesh handling

The geometrical description of a device to simulate is based on a finite element
discretization. The corresponding mesh can be generated in different graphical
tools (currently DEVISE of the former ISE TCAD toolchain [101] and Gmsh [39]).
This mesh, called parent mesh, is common to all TIBERCAD modules to allow for
easy interchange of data (cf. sec. 1.3). The mesh contains not only volumic ele-
ments (ND-elements where N is the dimension of the simulation domain), but also
boundary elements used for definition of boundary conditions. The single elements
are combined into non-overlapping geometrical regions, identified by unique strings
or numbers, depending on the mesh generation tool and mesh file format. These
regions are referred to in the input file, using their identifiers, to be reassembled
into logical groups, called physical regions and clusters. The physical regions are
device regions characterized by a single material with certain attributes such as
constant doping and crystal orientation. Therefore the Region blocks in the input
file (cf. Listing 4.1) contain the definition of the material including material param-
eters, crystal orientation and doping. Each region has a distinct user defined name
that can be referred to in the input file. Clusters can be used to reassemble sets of
geometrical regions into logical units irrespective of their membership to physical
regions. They are mainly useful when doing quantum mechanical calculations on
parts of the device. Fig. 4.2 illustrates these concepts schematically.

X

Y

Z

GaN
intrinsic

GaN
intrinsic

GaN
p−doped

GaN
n−doped

1

2

4

5

4 2 3

1

InGaN3

Region GaN_n : 1
Region GaN_p : 5
Region GaN_i : (2, 4)
Region InGaN : 3

Cluster quantum : (2, 3, 4)

Poisson eq. is solved on all regions.
Schrödinger eq. is solved on quantum.

Figure 4.2: Illustration of the mesh with mesh regions. The device is
a p-i-n structure with embedded quantum well. We assume a Schrödinger-
Poisson calculation to be performed. On the mesh regions 2–4 a quantum
mechanical simulation will be performed. Boundary regions are indicated by
italic numbers.



4.3 User interface 75

4.2.2 Model hierarchy

The implementation of physical models is based on three class hierarchies, shown
in Figs. 4.3–4.5. The core of each model is contained in a class inherited from
SimulationInterface. Its task is the numerical implementation of the mathemat-
ical description of the physical model. This essentially means the discretization of
operators, assembly of matrices and the interfacing to numerical libraries.

All physical parameters that depend on material (and thus on mesh regions)
or on model details which formally do not affect discretization or matrix assembly
are contained in classes derived from PhysicalModel. Objects of these classes are
instantiated for each physical region defined in the input file (Region sections in
the input file). To control model details they can make use of other classes de-
rived directly from PhysicalModelInterface. Examples for this are mobility and
recombination models which are encapsulated as members in the PhysicalModel
of drift-diffusion. Usually the preparation for the numerical calculations involves
loops over the mesh elements. The PhysicalModel objects can then easily be found
as each element knows the physical region it belongs to.

Boundary conditions are handled in a similar way.

provides abstract interface: − solve()
                                               − get_solution()
                                               − plot()
                                               − ...

> provide model dependent implementations
> can access result of other models by means
   of the abstract interface

SimulationInterface

DriftDriffusion

Macrostrain

...

Figure 4.3: SimulationInterface hierarchy.

4.3 User interface

The user interface of TIBERCAD is given by a textual input file. This file is organized
in different sections tagged by a section name preceded by the dollar sign, e.g.
$Device. The content of the section is enclosed between curly brackets. Each
section can contain any number of blocks, where each block is enclosed by curly
brackets and preceeded by a block name. Blocks can be nested. A block containing
any number of key-value pairs is called a parameter block. Key-value pairs are
assignments of the form

key = value
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> provides abstract interface: − init()
                                                  − read_database()
> provides abstract container for material
   dependent model parameters

PhysicalModel

DriftDiffusionProperties

MobilityModelInterface

ConstantMobility

contains
as member

PhysicalModelInterface

contain material dependent
parameters

...

...

Figure 4.4: PhysicalModelInterface hierarchy. For each physical region
(Device section) and each simulation (Models section) an instance of a class
derived from PhysicalModel is created according to the options given in the
Physics section.

where key is a string and value is a single numerical value or string or a list of
values separated by commas and enclosed by parentheses. Different key-value pairs
are separated by spaces, therefore values cannot contain white space.

A hash sign (#) initiates a comment extending until the end of line.
The following sections are defined:

Device Contains the description of the different geometrical regions of the device.
It can contain two types of blocks.

The Region blocks are used to define the different regions that are present
in the mesh. It defines the material, the crystal structure, growth direction,
constant doping and optionally material properties that are needed for simu-
lations based on continuous media descriptions.

The optional Cluster blocks can be used to logically unite different regions
which can then be addressed by the cluster name.

Scale Contains the description of device regions or simulation entities that are not
based on continuous media approaches handled in the Device section. This
can be models for lumped curcuit devices (not implemented yet) or regions
that have to be simulated on an atomistic scale, e.g. tight-binding. The latter
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provides abstract container for boundary
conditionsBoundaryProperties

ThermalContact

ElectricalContact

Implementation of boundary conditions

...

Figure 4.5: BoundaryProperties hierarchy.

is defined in an Atomistic block. The microscopic (atomic) structure inside
the regions assigned in the Atomistic block will be generated automatically.

Models This section contains the definition of the models used to describe the
entities defined in Region or Atomistic blocks. Each model is defined in
its own block, tagged by the identifier of the model (e.g. driftdiffusion,
macrostrain). These blocks can embody three types of nested blocks, namely
options, physical_model and BC_regions.

The options-block contains the names of physical regions defined in Region
or Cluster blocks and an optional user-defined identifier for the simulation.

The (optional) physical_model-block can contain parameters relevant to
some aspect of the current model. Usually submodels such as carrier mo-
bility or recombination models are defined in this way.

The BC_regions-block finally contains the description of the boundary con-
ditions.

Solver Contains options and parameters relevant for the numerics of a model. For
each model defined in the Models section, a block tagged with the model
identifier or the user-provided model name can be defined.

There are two special blocks to define parameter sweeps and selfconsistent
simulations.

Physics In this section one can define additional physical parameters relevant for
each model or override material parameters from the database. For each
model defined in the Models section, a block tagged with the model identifier
or the user-provided model name can be defined. Material or model parame-
ters given in Regions blocks will override parameters specified in block tagged
with the user-provided simulation name which in turn overrides data provided
in a block tagged with the model identifier.
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Simulation This section defines global options for the simulation such as mesh
file, temperature, path for output data and database, the variables to plot
and the simulations to be performed.

Listing 4.1 shows an example of a simple input file for the pn-heterojunction as
illustrated in Fig. 4.6. Certain values can be specified as variables using a special
syntax. An example is the contact voltage for a voltage sweep (see Listing 4.1,
line 56).

1

2

2

anode 1

AlGaAs

GaAs

cathode / substrate

Figure 4.6: pn-heterojunction diode for Listing 4.1.

# diode example

# Description of the device physical regions

$Device
5 {

Region n_side

{

reg_numb = 2
mat = GaAs

10 doping = 5e18 doping_type = donor
}

Region p_side

{

15 reg_numb = 1
mat = AlGaAs
x = 0.1
doping = 1e19 doping_type = acceptor

}

20 }

# Definition of Simulation Models and associated Boundary Conditions

$Models
25 {

model driftdiffusion

{

options

30 {

simulation_name = driftdiffusion
physical_regions = all

}
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35 physical_model recombination

{

model = srh
}

40 physical_model electron_mobility

{

model = doping dependent
}

45 physical_model hole_mobility

{

model = doping dependent
}

50 BC_Regions

{

BC_Region anode

{

BC_reg_numb = 1
55 type = ohmic

voltage = @Vb
}

BC_Region cathode

60 {

BC_reg_numb = 2
type = ohmic
voltage = 0.0

}

65 }

}

model macrostrain

{

70

options

{

simulation_name = strain
physical_regions = all

75 }

BC_Regions

{

BC_Region substr

80 {

BC_reg_numb = 2
type = substrate
material = GaAs

}

85 }

}

}

90 # Definition of Model-dependent Solver parameters

$Solver
{

driftdiffusion

{

95 nonlin_step_tol = 1e-6
nonlin_max_it = 30
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ls_max_step = 1
}

100 strain

{

substrate = substr
max_iterations = 1000

}

105

sweep

{

variable = Vb
start = 0.0

110 stop = 3.2
steps = 32
plotvariable = current
plot_data = true

}

115 }

# Definition of Model dependent physical parameters

$Physics
120 {

driftdiffusion

{

model = strained
statistics = FD

125 strain_model = strain
}

}

130 # Definition of global simulation options

$Simulation
{

searchpath = ../materials
meshfile = diode mdr.grd

135 dimension = 2
temperature = 300
solve = sweep
resultpath = output
output_format = vtk

140 plot = (Ec, Ev, QFermi e, QFermi h, eDensity, hDensity, eCurrent, hCurrent, strain)
}

Listing 4.1: Input file for a simple pn-heterojunction diode.



Chapter 5

Simulation Examples

5.1 Piezoresistivity effects of HEMT structures

The piezoelectric effect plays a fundamental role for the electronic properties of de-
vices especially based on wurtzite GaN/AlGaN heterostructures, and measurements
of such structures have been reported in literature [33]. The experimental results
were interpreted in [33] by the authors in the limits of analytical one-dimensional
models assuming homogeneous distribution of strain induced by a mechanical force.
A realistic strain pattern in AlGaN/GaN N-face and AlGaAs/InGaAs/GaAs A- and
B-face FETs has been calculated and published in [6] using TIBERCAD with the
aim of investigating the effect on the resistivity of the device.

The pseudomorphic heterojunction devices considered here posses strain defor-
mation due to both lattice mismatch and an external pressure applied on top of the
structure. We make use of the continuous media model as described in section 2.1
in order to compute the strain distribution.

In the simulation we assume that the device is grown on a thick substrate that
remains unstrained. At the surface of the device we apply the following boundary
condition for stress:

σij(r)ni =

{
fj , if the force f is applied at point r

0, otherwise,
(5.1)

where n is the unit normal to the surface onto which the force f acts. From the
computed strain we get the piezoelectric polarization Ppz as given in (2.16). The
total polarization is then used in the Poisson equation for the transport calcualtion.
In the latter electrons and holes are considered. The band parameters for both
carriers are calculated according to section 2.4.1, including the effects of strain. The
mobilities are assumed to be constant as the devices are simulated for small bias
near equilibrium. The necessary material parameters were taken from [106,107].

The first simulated structure, Fig. 5.1(a), is an AlGaN/GaN inverted HEMT
grown along [0001̄] direction with N-face polarity without gate metallization, as con-
sidered in [33]. The second one, shown in Fig. 5.1(b), is an AlGaAs/InGaAs/GaAs
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(b) AlGaAs/InGaAs/GaAs HEMT

Figure 5.1: Schematic drawing of the simulated heterostructures.

HEMT grown along [311] direction with A- or B-face polarity [99]. The latter does
not show spontaneous polarization as it is built of materials with cubic symmetry.

For both structures a well defined pressure was applied on a region of the surface
at the center between the source and drain contacts. In the second structure this
region coincides with the gate, whereas in the first one pressure is imposed on a line
of 100 nm length. The resistance was calculated for a drain-source voltage of 0.1
V. The gate of the AlGaAs/InGaAs/GaAs structure was biased at 0 V, assuming
the Schottky-barrier height to be 0.8 eV.

In Fig. 5.2 we show the pattern of the lateral strain component εxx of the
AlGaN/GaN structure without and with an external force of 0.04 Ncm−1. Only
the strain map of the AlGaN layers are made visible in the picture. The GaN, which
is slightly compressed appears as white surface. The inhomogeneity in the strain
pattern without pressure is due to the finite size of the device which causes a slight
bending of the structure. The external pressure induces a highly nonhomogeneous
strain distribution as can bee seen in part (b) of the figure.

The simulated piezoresistivities of the two structures are shown in Fig. 5.3.
For small pressures the dependence of the relative change of resistance on pressure
is linear. In the AlGaN/GaN structure the resistance increases with increasing
pressure which is in agreement with the findings in [33]. The external pressure leads
to a slight compression of the AlGaN barrier as is clearly seen in Fig. 5.2. This
causes a decrease of the piezoelectric polarization in the barrier which decreases the
discontinuity in polarization and therefore the electron density in the channel [3].

For the AlGaAs/InGaAs/GaAs structure our simulation results show a strong
dependence on substrate termination. For the case of A-face polarity the resistance
increases for increasing stress on the gate. For B-face polarity and low pressure the
resistance is decreasing but with the increasing of the pressure the effect becomes
non-monotonic. Then the resistance continues to grow even faster than in the case
of the A-face substrate.
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Figure 5.2: Contour plots of the lateral strain component εxx in a part (cf.
dashed box in Fig. 5.1(a)) of the AlGaN/GaN FET without (a) and with (b)
pressure.
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Figure 5.3: Relative change of resistance as a function of external force.
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pressure of 50 mN/cm.

In the B-face structure the 2DEG is more confined towards the upper InGaAs-
AlGaAs interface, where both piezoelectric polarization and strain are significantly
affected by the pressure. Due to that there are two effects that make the depen-
dence non-monotonic: the effect of the closing of the channel by the piezoelectric
field that dominates at high pressure and the effect of the deformation potential that
dominates at lower pressure. For comparison, we also show the results of a simula-
tion which does not consider the piezoelectric polarization where the deformation
potential is the only effect that affects the device resistivity.

The piezoelectric effect appears to be stronger in the AlGaAs/InGaAs/GaAs
structure. This can be explained by the fact that the external pressure affects
the whole channel region which is the determinant part of the device. In the Al-
GaN/GaN structure on the other hand the influence is limited to a small part of
the channel.

Fig. 5.4 presents the electron density in the channel in the gate region of the B-
face AlGaAs/InGaAs/GaAs HEMT. An external force of 50 mN/cm applied onto
the gate leads to a convex deformation of the device and to a narrowing of the
electron channel thus increasing the resistance.
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5.2 The influence of gate tunneling in MOSFETs

The present scaling of Si-based technology [46] is leading to quantum mechanical
tunneling which results in excessive gate leakage current in MOSFETs. In order to
avoid this limitation, several alternative high-κ gate dielectrics have been studied.
Among these, ZrO2 and HfO2 have attracted great interest and have been selected
for MOSFET applications [89].

Quantum phenomena in MOS systems, both based on SiO2 and high-κ ox-
ides, are usually either neglected or studied within simplified schemes, such as the
effective-mass approximation (EMA). However, a macroscopic description is often
not fully satisfying for phenomena that occur on a characteristic length scale of a
few nm such as tunneling through high-κ gate dielectric stacks [52] Moreover, many
of the effective parameters used in EMA are not known for this length scale and
should be extracted by microscopic approaches.

Here we present simulation results of a high-κ MOSFET including gate tunnel-
ing calculated using a microscopic approach [8]. Fig. 5.5 shows a schematic drawing
of the simulated device. The tunneling properties of the gate dielectric (SiO2, ZrO2

and HfO2) were calculated by applying quantum mechanical methods that include
the full band structure of Si and the oxide materials [91].

p 1018

source drain

gate

ZrO2 5nm

19n 1019n 10

Si

25 nm

Figure 5.5: Schematic drawing of simulated device.

First, the electronic band structures of the oxide materials (in crystalline form)
are calculated based on density functional theory (DFT). Then the parameters for
a semiempirical sp3s∗d5 tight-binding (TB) parametrization are determined such
as to reproduce the band dispersions obtained from the DFT calculations and the
experimental band gap of approximately 5.7 eV. The atomic structure of Si/ZrO2/Si
and Si/HfO2/Si is modeled as shown in Fig. 5.6.

The tunneling properties of these structures are calculated using the transfer
matrix method based on the TB description of the structure [90, 26]. Although
the oxides considered are amorphous materials, calculations based on a crystalline
form are expected to provide reasonable results as has been found in SiO2-based
MOS systems [90]. One of the main advantages of the TB approach is its ability
to include any microscopic feature such as bond arrangement at the interfaces or
the complex band structure, which is particularly important for modeling tunneling
currents.

A n+-Si/oxide/p-Si MOS capacitor has been assumed for the tunneling calcu-
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Figure 5.6: Microscopic model for the Si/high-κ oxide/Si heterostructure.

lations with n+-doped Si gate (Nd = 3 · 1020 cm−3) and slightly p-doped Si bulk
(Na = 1015 cm−3), biased in accumulation region. Fig. 5.7 shows the tunneling
current through different oxides in dependence on the equivalent oxide thickness
(EOT). The latter is defined as

EOT = tSiO2 =
εSiO2

εhigh−κ
thigh−κ

where tSiO2 and thigh−κ are the oxide thicknesses for SiO2 and a high-κ dielectric,
respectively. Fig. 5.8 shows the tunneling through ZrO2 against the applied voltage
for several EOT.
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Figure 5.7: TB tunneling currents through ZrO2 and HfO2 against the
EOT, compared to a SiO2-based MOS.

The multiscale simulation of the MOSFET shown in Fig. 5.5, coupling micro-
scopic gate tunneling with semi-classical drift-diffusion, is done in the following way.
First, the Poisson equation is solved on the whole device for a gate bias such that
the transistor is in accumulation. Then the tunneling current density is calculated
quantum-mechanically. For this we assume that the tunneling current density lo-
cally depends only on the barrier height and on the local electro-chemical potential
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Figure 5.8: Tunneling currents through ZrO2 against the applied potential.

at the semiconductor-oxide interface. This allows to calculate the tunneling cur-
rent independently on slices perpendicular to the channel using the 1D approach as
described before. The current density obtained from this is used as a boundary con-
dition for the normal electron flux at the semiconductor-oxide interface during the
drift-diffusion calculation. The procedure is iterated until convergence is reached.
The charge density in the gate oxide resulting form the electrons tunneling through
the gate is neglected in the calculation of the electric potential.

In Figs. 5.9 and 5.10 we show the subthreshold transfer characteristics for a
source-drain voltage of 0.1 V and 1 V calculated with and without including the
gate oxide tunneling current. Results for ZrO2 are compared with HfO2 and SiO2

with the same EOT. As it is expected from Fig. 5.7, the SiO2 gate shows significant
tunneling with respect to the HfO2 gate, and the ZrO2 tunneling current is visible
only at small source-drain voltage. From Fig. 5.9 follows, that in the case of a
source drain voltage of 0.1 V the effect of tunneling becomes visible for SiO2 at a
gate voltage of -0.6 V and for ZrO2 at -1.7 V. At such voltages the drain current
for SiO2 and ZrO2 transistors becomes mostly controlled by the gate tunneling.
For a higher drain-source bias of 1 V, which corresponds to the saturation of the
channel current in the inversion regime, both ZrO2 and HfO2 characteristics are
not influenced significantly by the tunneling effect, however the SiO2 drain current
begins to saturate at a gate voltage of -1 V due to tunneling.
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Figure 5.9: Drain current vs. gate voltage at 0.1 V drain-source bias.
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5.3 GaAs-based pin-diodes for polariton LASER

Structures based on GaN and GaAs are currently investigated for use in polariton-
Lasers. Polaritons are quasi-particles formed by the coupling of the electromagnetic
field with excitons. As such they are composite bosons. To achieve polariton for-
mation one has to create an exciton population inside an optical cavity such that
they can couple to the electromagnetic field. Electrical injection of excitons into
an In0.05Ga0.95As quantum well embedded in the intrinsic region of a GaAs p-i-n
photodiode has been demonstrated in 2007 [11]. This is an important step towards
practical exploitation of the strong coupling for polariton-based optoelectronic de-
vices.

Whereas in GaN strong coupling has been observed at room temperature [97],
in GaAs based structures excitons are formed only at low temperatures. Excitonic
emission was observed up to 70 K [11].

A GaAs based structure grown and characterised at the LPN-CNRS has been
simulated at different temperatures using TIBERCAD. Fig. 5.11 shows the device
structure.

GaAs n = 10 19

GaAs p = 10 19

GaAs n = 2 10 18

GaAs p = 2 10 18

In0.05Ga0.95As

300 nm

100 nm

50 nm

117.5 nm

300 nm

500 nm

8 nm

GaAs

GaAs

anode

cathode

Figure 5.11: Schematic drawing of simulated device.

In the real device, square mesas of 300× 300µm2 are formed by optical lithog-
raphy and chemical etching and contact metallizations are applied on the substrate
back side and on the top of the mesa. As the experiments do not show in-plane
variations of emission, only 1D simulations along growth direction were performed.
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The following equations are considered in the simulation:

−∇(ε∇ϕ) = −e(n− p−N+
d +N−

a ) (5.2a)
−∇(µnn∇φn) = R (5.2b)
−∇(µpp∇φp) = −R (5.2c)
−∇(µxx∇φx) = −Rx, (5.2d)

where x and φx are the exciton density and an “effective” exciton potential de-
fined in an analogous way as the electro-chemical potential for electrons and holes
(cf. sections 2.2.1.2 and 2.2.1.3). The net recombination rates are modeled as fol-
lows, considering SRH recombination, direct (radiative) e-h recombination, exciton
formation, radiative exciton recombination and exciton dissociation:

R = RSRH +B(np− n2
i ) + γnp− x/τdiss (5.3)

Rx = −γnp+ x/τdiss + x/τrad (5.4)

In the bulk GaAs, excitons are not expected to be found, so eq. (5.2d) can be
restricted to the quantum well. Furthermore, the electron-hole system is assumed
to be in chemical equilibrium with the exciton gas. This latter assumption leads
from statistical arguments to a law of mass action of the form

np = n∗x, (5.5)

where n∗ can be calculated from the statistics of the involved particles [113].
Assuming an approximately constant exciton density and exciton formation rate

in the quantum well, we can neglect the exciton flux and (5.2d) leads to

x/τrad = γnp− x/τdiss. (5.6)

Together with (5.5) we can now eliminate the exciton density in the electron and
hole continuity equations and the respective recombination rates reduce to

R = RSRH +B(np− n2
i ) +

np

n∗τrad
(5.7)

For a 2D system, n∗2D = kBTµ
2π~2 e

−Eb/kBT , where µ and Eb are the reduced exciton
mass and the exciton binding energy, respectively. As the simulation does not
consider 2D gases, n∗ = n∗3D for the simulation is estimated to be n∗3D = n∗2D/w,
where w is the quantum well width.

Figure 5.12 shows the simulated and measured IV characteristics. In fig. 5.13 the
dependence of the estimated 2D electron, hole and exciton density on the current
density at 50 K is shown. The 2D electron and hole densities are calculated by
numerically integrating the 3D densities over the quantum well. The exciton density
is then calculated from (5.5).

Two curves based on a different way of calculating the exciton density are also
shown in the figure. It uses charge conservation and assumes that all injected



5.3 GaAs-based pin-diodes for polariton LASER 91

carriers recombine radiatively in the quantum well, which leads to nx = Jτ/e. This
formula gives very similar results at low temperatures and high current densities,
but as it neglects the other recombination terms, it overestimates the exciton density
especially at low currents. Subtracting the contribution from SRH-recombination,
one gets a similar result to the one using (5.5).
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Figure 5.12: Simulated and measured IV characteristics at different tem-
peratures.
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5.4 Structures for polariton LASERs and LEDs based
on GaN

GaN is a very promising material for the realisation of exciton based optoelectronic
devices and is therefore studied extensively [97, 28]. Due to a big exciton binding
energy R of more than 20 meV exciton formation can be expected even at room
temperature, in contrast to structures based on GaAs (see last section) which have
to be cooled down to below 100 K.

Different structures proposed for GaN polariton lasers have been simulated with
TIBERCAD, the simplest of which shall be presented here [81]. The simulated struc-
ture is schematically drawn in Fig. 5.14. An In0.05Ga0.95N quantum well embed-

In 0.05Ga0.95N

100   mµ

µ
10

   
m

50    mµ

cathode
GaN intrinsic

symmetry axis

100 nm

anode
100 nm GaN p−doped

65 nm
50 nm

5 nm

GaN n−doped

Figure 5.14: The structure of the simulated device.

ded in a 120 nm thick intrinsic GaN layer is grown on a n-doped GaN substrate
(Nd = 5 · 1018 cm−3), followed by a p-doped cap layer (Na = 5 · 1018 cm−3). We
assume that a circular mesa with radius R = 50µm is defined by etching such as
to build a VCSEL-like structure with anode on top and cathode on the side. The
symmetry of the structure is considered in the simulation by formulating the prob-
lem in cylinder coordinates and assuming a solution without angular dependence
(cf. Appendix B).

In this example we do not assume chemical equilibrium between the electron/hole
and exciton gases, and we cannot neglect the exciton flux as the structure is in-
homogeneous in x-direction. Exciton formation is expected to occur mainly in the
InGaN quantum well under the anode, creating a laterally inhomogeneous exciton
population and thus leading to an exciton drift towards the center of the mesa.
For this reason the drift-diffusion equation for the excitons is solved explicitly, in
contrast to the example in the last section, leading to a system of four equations
(cf. eqns. (5.2)). The simulation has been performed self-consistently, using a mod-
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ified Broyden algorithm [49]. For the excitons we assumed a binding energy of
R = 20.4 meV, a mobility of µx = 1500 cm2V−1s−1, an exciton generation rate
parameter γ = 2 · 10−7 cm3s−1, an exciton dissociation time of τdiss = 6 · 10−9 s,
a non-radiative exciton recombiantion time of τnr = 1.2 · 10−9 s and a radiative
exciton recombiantion time of τnr = 1 · 10−11 s in the undoped materials.

A voltage sweep has been done from 0 V to 3.5 V, in each step doing a self-
consistent calculation of the coupled drift-diffusion/exciton system. Fig. 5.15 shows
the resulting IV characteristics, comparing simulations with and without exciton
formation.
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Figure 5.15: IV characteristics of the pin diode with and without considering
exciton formation.

In Fig. 5.19 on p. 97 we show the band profiles and the electron and hole
densities in the structure ate a bias voltage of 3.35 V. We note that the highest
carrier densities are found in the quantum well below the anode such that also the
excitons will accumulate in the same region, which is an undesired effect as light
generation due to radiative exciton recombination mostly occurs in the periphery
of the mesa instead of in the center. The effect of diffusion is too weak to effectively
populate the quantum well in the center of the device for the studied radius of the
mesa.

Fig. 5.16 presents the electron, hole and exciton densities in the mesa for the
same bias voltage. It can easily be seen that exciton generation happens most
effectively below the anode, i.e. in regions of high current density. Therefore one
would like to confine the current to the center of the device. In Fig. 5.17 we show
a cut along the quantum well. We may notice that the excitons generated below
the anode tend to diffuse towards the center of the mesa. A cut along the vertical
direction y is shown in Fig. 5.18.



5.4 Structures for polariton LASERs and LEDs based on GaN 95

electron_density

2E+18
3.49736E+17
6.11575E+16
1.06945E+16
1.87012E+15
3.27024E+14
5.7186E+13
1E+13

density (cm-3)

-40 -20 00

0.1

0.2

0.3

p

-40 -20 00

0.1

0.2

0.3

x

µm

µm

-40 -20 00

0.1

0.2

0.3
n

anode

Figure 5.16: Electron, hole and exciton densities in the mesa.

-50 -40 -30 -20 -10 0
x (µm)

1014

1016

1018

de
ns

ity
 (c

m
-3

)

x
n
p

Figure 5.17: Electron, hole and exciton densities along a cutline in x-
direction in the quantum well. Not that the data are extracted at the y-
position of maximum electron density, i.e. towards the upper boundary of
the quantum well, whereas the holes are confined towards the lower boundary
(cf. Fig. 5.18).



96 5 Simulation Examples

0 0.05 0.1 0.15 0.2 0.25 0.3
y (µm)

1010

1012

1014

1016

1018

de
ns

ity
 (c

m
-3

)

x
n
p

x = -40 µm

intrinsic
region

(a) densities

0 0.05 0.1 0.15 0.2 0.25 0.3
y (µm)

-4.0

-3.0

-2.0

-1.0

0.0

E
ne

rg
y 

(e
V

)

x = -40 µm

Ec

Ev

φn

φp

(b) band diagram

Figure 5.18: Electron, hole and exciton densities along a cutline in y-
direction at x = −40µm.



5.4 Structures for polariton LASERs and LEDs based on GaN 97

F
ig

u
re

5.
19

:
P

lo
ts

of
th

e
ba

nd
ed

ge
s,

el
ec

tr
on

an
d

ho
le

de
ns

it
ie

s
an

d
of

th
e

to
ta

l
cu

rr
en

t
de

ns
it
y,

in
cl

ud
in

g
cu

rr
en

t
flo

w
lin

es
.

Si
m

ul
at

io
n

vo
lt
ag

e
is

3.
35

V
,
co

rr
es

po
nd

in
g

to
a

di
od

e
cu

rr
en

t
of

ap
pr

ox
im

at
el

y
60

m
A

.



98 5 Simulation Examples

5.5 AlGaAs/GaAs/AlGaAs Quantum well

In this last example we present a simple self-consistent calculation of a 20 nm GaAs
quantum well in an Al0.3Ga0.7As n-i-n structure (cf. Fig. 5.20). The quantum well

17 cm −3AlGaAs n−doped 10
GaAs
QW 17 cm −3AlGaAs n−doped 10

Quantum region

x (nm) || [100]

Figure 5.20: Schematical drawing of the simulated quantum well structure.

width is 20 nm, and the AlGaAs barriers are n-doped with Nd = 1017 cm−3. Only
a part of the structure including the QW is considered for the quantum mechanical
calculation. Outside a classical density is assumed. Strain is shown in Fig. 5.21.
Due to the larger lattice constant of AlGaAs with respect to GaAs, the latter gets
expansively strained in the plane perpendicular to the growth direction and thus
compressively strained in growth direction. As the structure is grown along [100],
all off-diagonal strain components vanish.
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Figure 5.21: Non-zero strain components.

Fig. 5.22 shows a comparison between the classically calculated conduction band
and electron density and the result of the self-consistent Schrödinger-Poisson cal-
culus.
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Figure 5.22: Equilibrium results of classical and self-consistent Schrödinger-
Poisson calculations.



Appendix A

Numerical Evaluation of
Terminal Currents

The total current flowing out of the l-th contact of a device can be expressed (in
the stationary case) as

Il =
∫

Γl

(Jn + Jp) n dA, (A.1)

where Γl, n and dA are the boundary part, the outer normal vector and the surface
element of the l-th contact. The direct evaluation of this integral however can lead
to big numerical errors.

A more accurate evaluation of the terminal currents transforms the surface
integral into a volume integral over the device volume Ω by means of so called
Ramo-Shockley test functions (RSTF) [111,112]. The RSTF hl for the l-th contact
has the following property

hl|Γm = δlm, hl ∈ H1(Ω), (A.2)

i.e. it is 1 on the l-th contact and 0 on all the other contacts and belongs to the
Hilbert space H1(Ω) [111].

Using hl as test functions in the continuity equation for the total current density

∇ (Jn + Jp) = 0, (A.3)

one can write equation (A.3) in weak form∫
Ω
hl∇ (Jn + Jp) dV = 0 (A.4)

Integrating by parts leads to

0 =
∫

∂Ω
hl (Jn + Jp) n dA︸ ︷︷ ︸

=Il

−
∫

Ω
∇hl (Jn + Jp) dV (A.5)
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Due to the special properties of the RSTF, the boundary integral in equation (A.5)
is exactly the current flowing out from the l-th contact, so one gets

Il =
∫

Ω
∇hl (Jn + Jp) dV (A.6)

The RSTFs can be chosen arbitrarily as long as they have the properties given
in (A.2), but their choice will have an impact on the precision of the calculation.
When the Poisson and continuity equations are discretized using the finite element
method (FEM) it is natural to construct them from the finite element basis:

hl =
∑

i

αiψi, ψi ∈ VN (A.7)

where VN ⊂ H1(Ω) is a space of continuous, piecewise linear functions. The coeffi-
cients are chosen in TIBERCAD to be

αi =
{

1 if xi ∈ Γl

0 else

With this choice and using J = −e(µnn∇φn + µpp∇φp), equation (A.6) can be
written as

Il = −e
∑
i∈Γl

∫
Ω

(µnn∇φn + µpp∇φp) dV

= −e
∑
i∈Γl

∑
k

∫
Ω

(µnnvk + µppwk)∇ψi∇ψk dV (A.8)

For the last expression we used the expansion of the electro-chemical potentials
in terms of the finite element basis functions. The numerical evaluation can be
implemented quite easily using an element wise approach.

For device simulations one usually asks for overall current conservation, i.e.∑
l Il = 0. To prove that in our method current is conserved we observe from

equation (A.5) that∫
Ω
∇s (Jn + Jp) dV = 0, ∀s ∈ UN , UN =

{
s
∣∣∣ s ∈ VN , s|ΓDirichlet

= 0
}
.

We can define a function p := 1 −
∑

l hl which is clearly an element of UN , as it
vanishes on all Dirichlet boundaries. So we can write (defining the total current
density J = Jn + Jp)

0 =
∫

Ω
∇pJ dV =

∫
Ω
∇

(
1−

∑
l

hl

)
J dV

= −
∑

l

∫
Ω
∇hl J dV = −

∑
l

Il , (A.9)
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which proves that total current is conserved.
A proper choice of the test functions can lead to improved accuracy. In par-

ticular, the RSTF can be chosen to satisfy the poisson equation ∇(ε∇hl) = 0,
which would follow quite intuitively from the original formulation of Ramo and
Shockley [111]. It remains to note that this method can be extended also for time
dependent calculations.



Appendix B

Implementation of Cylindrical
Symmetry

The computing time needed for a electronic device simulation depends very much
on the dimension of the problem. 2D and 3D simulations need much more nodes
than calculations in 1D and 2D, respectively, and they also produce matrices with
much bigger bandwith. Therefore one tries to reduce the dimensionality for the
simulation by using symmetries of the physical device.

Usually the symmetry is not exact and does neglect e.g. boundary effects.
MOSFETs for example are often simulated in only 2D assuming an infinitely wide
gate. In other cases the fabrication process induces a spatial symmetry as is the case
for VCSELs and other vertical structures with cylindrically shaped mesa. Provided
that the physical properties of the constituent materials have the same symmetry,
one can assume that the quantities describing the device behaviour have no angular
dependence.

Whereas the implementation of specular symmetry is straightforward (it is
mainly a question of boundary conditions as no coordinate transformation is in-
volved), the case of cylinder symmetry is slightly more complicated. The transfor-
mation between cartesian and cylinder coordinates can be stated as

x = ρ cos(ϕ)
y = ρ sin(ϕ)
z = ζ

(B.1)

with jacobian

J =


∂x
∂ρ

∂x
∂ϕ

∂x
∂ζ

∂y
∂ρ

∂y
∂ϕ

∂y
∂ζ

∂z
∂ρ

∂z
∂ϕ

∂z
∂ζ

 =

 cos(ϕ) −ρ sin(ϕ) 0
sin(ϕ) ρ cos(ϕ) 0

0 0 1

 , |J| = ρ (B.2)

The Laplace operator ∆ =
∑

i
∂2

∂x2
i

in cylinder coordinates reads

∆ =
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2
+

∂2

∂z2
(B.3)
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The implementation is simplified a lot because in the finite element method
(and also in the box integration method) only first order partial derivatives appear
in the equations (after applying the Gauss theorem).

Writing xi := x, y, z x = (x, y, z) and ξi := ξ, η, ζ ξ = (ξ, η, ζ), the first order
partial derivatives can be written as

∂

∂xi
=
∂ξk
∂xi

∂

∂ξk
(B.4)

or
∇x =

(
J−1

)T ∇ξ (B.5)

Assuming no angular dependence, i.e. f(ρ, ϕ, z) = f(ρ, z), one can choose ϕ = 0
such that ρ and x coincide. In this way the gradient is formally invariant under the
coordinate transformation:

∇x =
(
∂

∂ρ
, 0,

∂

∂z

)
(B.6)

and one can map (ρ, z) to (x, y).
As a consequence, for the implementation of cylindrical symmetry only the

proper volume elements dV need to be considered. The poisson equation∇ε∇ψ = f
in weak form for example transforms in the following way:

−
∫∫∫

ε∇ψ∇ν dxdy dz =
∫∫∫

fν dxdy dz (B.7)

⇓

−
∫∫∫

ε∇ψ∇ν|J|dρdϕdz =
∫∫∫

fν|J|dρdϕ dz (B.8)

⇓

−2π
∫∫

ε∇ψ∇νρdρdz = 2π
∫∫

fνρdρdz (B.9)

Using the mapping (ρ, z) → (x, y) the last equation can be implemented very easily
using an existent 2D implementation in cartesian coordinates.



Appendix C

A comparison principle for
quasi-linear elliptic equations

We consider the quasi-linear equation in divergence form

Q(u, η) .=
∫

Ω
[A(x, u,∇u) · ∇η −B(x, u)η] dx = 0 (C.1)

where A(x, u, q) and B(x, u) (writing q ≡ ∇u) are measurable and continuously
differentiable with respect to u, q in Ω̄ × R × Rn, Q is uniformly elliptic and u ∈
H1(Ω̄), η ∈ H1

0 (Ω̄), i.e.

∃λ(u), Λ(u) > 0 such that

λ(u) |ξ|2 ≤
∑
i,j

∂Ai

∂qj
ξiξj ≤ Λ(u) |ξ|2 ∀u, ξ (C.2)

Eq. (C.1) corresponds to a boundary value problem

Qu = −∇A(x, u,∇u)−B(x, u) = 0 in Ω
u = g on ∂Ω

(C.3)

We can formulate the following comparison principle for the problem (C.3) or
its weak formulation (C.1) (see [40,21])

Theorem C.1 (comparison principle). Let u,v ∈ H1(Ω̄) satisfy Qu ≤ Qv in Ω
and u ≤ v on ∂Ω, then if B is non-increasing in u for fixed x it follows that u ≤ v
in Ω.

For the proof of the theorem we use the following definition:

Definition C.1 (sub- and super-solution). A function u is called a (weak)
sub-solution of (C.3) if Qu ≤ 0 (Q(u, η) ≤ 0 ∀η). A function v is called a (weak)
super-solution of (C.3) if Qv ≥ 0 (Q(v, η) ≥ 0 ∀η).
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Proof. Let u, v ∈ H1(Ω̄) be two weak solutions of the above boundary value prob-
lem such that Qu ≤ Qv in a weak sense, i.e. Q(u, η) ≤ Q(v, η). This is especially
the case if u, v are sub- and super-solutions. We define

w = u− v

ut = v + t(u− v), 0 ≤ t ≤ 1
(C.4)

We will consider in the following the difference Q(u,∇u)−Q(v,∇v) ≤ 0 and write
it in terms of the difference w = u− v.

First we remember that for a function g(u) that is continuous in its argument
we can write

g(u)− g(v) =
∫ u

v

dg(ζ)
dζ

dζ =
∫ 1

0

dg(ut)
dut

dut

dt
dt =

∫ 1

0

dg(ut)
dut

dt · w (C.5)

Then we calculate Q(u,∇u)−Q(v,∇v):

Q(u,∇u)−Q(v,∇v) =
∫

Ω

{
[A(x, u,∇u)−A(x, v,∇v)] · ∇η

−[B(x, v)−B(x, v)]η
}

dx
(C.6)

As A and B are differentiable in u and ∇u we can apply (C.5) so that we get (in
index notation, writing ∂iu = (∇u)i)

Ai(x, u,∇u)−Ai(x, v,∇v) =∫ 1

0

∂Ai(x, ut,∇ut)
∂ut

dt︸ ︷︷ ︸
bi

·w +
∫ 1

0

∂Ai(x, ut,∇ut)
∂(∂jut)

dt︸ ︷︷ ︸
aij

·∂jw

B(x, u)−B(x, v) =∫ 1

0

∂B(x, ut,∇ut)
∂ut

dt︸ ︷︷ ︸
d

·w

(C.7)

Using these expressions we can finally write eq. (C.6) in terms of w:

L(w, η) =
∫

Ω
[(aij∂jw + biw)∂iη − dwη] dx ≤ 0 (C.8)

In other words, if u, v such that Qu ≤ Qv and u ≤ v on ∂Ω, then w = u − v is a
(weak) sub-solution of

Lw = −∂i(aij∂jw + biw)− dw = 0 in Ω, w ≤ 0 on ∂Ω

Due to (C.2) the above equation is uniformly elliptic and d ≤ 0 as B is supposed
to be non-increasing in u. Hence the linear equation for w can be treated by the
theory for linear elliptic equations [40], leading to a maximum principle. Therefore,
if w is a solution of (C.8) with w ≤ 0 on ∂Ω, then w ≤ 0 in Ω by virtue of the
maximum principle and consequently u ≤ v in Ω. �
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To apply Theorem C.1 to the drift-diffusion equations it has to be shown that
A(x, u,∇u) and B(x, u) are continuously differentiable with respect to u,∇u and
that B is non-increasing in u. The former can be seen easily using the explicit
formulas for A as stated in (3.25) and noting that n and p depend continuously on
their arguments. In the following we show the monotonicity of B with respect to u,
assuming for the recombination models a form R = R(x, n, p) = g(x, n, p)(np− n2

i )
with g ≥ 0. We make the following

Proposition C.1. All the functions B(x, u) are strictly decreasing in u, i.e.

(i)
∂Bϕ

∂ϕ
=
∂ρ

∂ϕ
< 0

(ii)
∂Bφn

∂φn
=

∂R

∂φn
< 0

(iii)
∂Bφp

∂φp
= − ∂R

∂φp
< 0

(i) Using the expressions for the densities (2.59) we can immediately deduce that
n is strictly increasing and p strictly decreasing in ϕ, i.e. ∂ϕn > 0 and ∂ϕp < 0.
From (3.32) we get (with Nd = gd = Na = ga = kBT = 1 for convenience)

∂ϕN
+
d = −(N+

d )2 exp(ϕ− φn − Ed) < 0

∂ϕN
−
a = (N−

a )2 exp(φp − ϕ+ Ea) > 0

Thus,
∂ϕρ = ∂ϕB

ϕ = ∂ϕ(p− n+N+
d −N−

a ) < 0

(ii) We use ∂φnR = ∂nR∂φnn and we allow for the following recombination mech-
anisms:

• γ(np− n2
i ), e.g. radiative recombination

• (np− n2
i )/[τp(n+ ni) + τn(p+ ni)], Shockley-Read-Hall (SRH)

• (Cnn+ Cpp)(np− n2
i ), Auger

Furthermore we use ∂φnn < 0.

For the first case it is easily obtained that ∂φnR = p∂φnn < 0.

For the SRH model we get, abbreviating D = τp(n+ ni) + τn(p+ ni),

∂nR =
∂

∂n

np− n2
i

τp(n+ ni) + τn(p+ ni)
=

p

D
+
−τp(np− n2

i )
D2

=
p[τp(n+ ni) + τn(p+ ni)]− τp(np− n2

i )
D2

=
pni(τn + τp) + p2τn + τpn

2
i

D2
> 0
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and thus ∂φnR < 0.

In the case of Auger recombination we get

∂nR =
∂

∂n
[(Cnn+ Cpp)(np− n2

i )] = Cn(np− n2
i ) + (Cnn+ Cpp)p

= 2Cnnp+ Cpp
2 − Cnn

2
i > −Cnn

2
i

This quantity is therefore not always positive and strictly speaking does not
satisfy the the Proposition C.1. Auger recombination however is only im-
portant in the high-injection regime, and the coefficients Cn,p are very small
(≈ 10−31 in silicon [94]). Therefore in almost all cases the contribution from
SRH will compensate the above small negative term and ensure the mono-
tonicity of the total recombination rate.

(iii) follows in the same way as (ii)

We repeat once again that even if the single equations of the drift-diffusion
system satisfy a comparison principle, this does by no means imply such a principle
to hold for the system of equations.
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