### Manipulation of polariton condensates in semiconductor microcavity ridges

C. Antón,<sup>1, 2</sup> T.C.H. Liew,<sup>3</sup> M.D. Martín,<sup>1, 2</sup> T.Gao<sup>4, 5</sup>, Z. Hatzopoulos,<sup>5</sup> P. Eldrigde,<sup>4, 5</sup> P.G. Savvidis,<sup>4, 5</sup> and L. Viña,<sup>1, 2</sup>

<sup>1</sup>Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain <sup>2</sup>Instituto de Ciencia de Materiales "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049 Madrid, Spain

<sup>3</sup>School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore <sup>4</sup>Department of Materials Science and Technology, Univ. of Crete, 71003 Heraklion, Crete, Greece <sup>5</sup>FORTH-IESL, P.O. Box 1385, 71110 Heraklion, Crete, Greece







### Manipulation of polariton condensates in semiconductor microcavity ridges

#### A. Amo, D. Sanvitto , F.P. Laussy, E. Del Valle, C. Tejedor

(UAM, Spain)

- A. *Lemaitre*, J. Bloch (CNRS, France)
- D. Krizhanovskii, M. S. Skolnick (Univ. Sheffield, UK)



C. Adrados, A. Bramati, E- Gacobino (Université Pierre et Marie Gurie, France) A. Kavokin (University of Southampton, UK)







#### M. Lewenstein

SYMPOSIUM: LIGHT & MATTER @ THE QUANTUM LEVEL, 20/10/08

# Atomic physics and quantum optics beat condensed matter physics ?

(attributed to Wolfgang Ketterle)





#### WELCOME to the homepage of the 2008 Latsis Symposium at EPFL on "Bose Einstein Condensation in dilute atomic gases and in condensed matter"

The Physics Nobel Prize in 2001 of Eric Cornell, Carl Wieman, Wolfgang Ketterle and recent publications in Journals such as Science and Nature have raised expectations in the field of Bose Einstein Condensation (BEC). The Symposium Latsis EPFL 2008 wishes to gather the experience developed by the "BEC Cold Atom" and the new "BEC Solid State" Communities. The Participants will have a unique opportunity to exchange ideas and compare findings. This will certainly lead to an unprecedented leap in BEC research, to the benefit of the two communities.

#### When: 28-30 January 2008 Where: EPF Lausanne, Switzerland



Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor Science 1995 Bose-Einstein Condensation of exciton polaritons Nature 2006



POLATOM-ESF-ISNP School; Maratea 01/09/2013



17

11-

fi

g tł Fi

#### Outline



- Polariton BECs
- Oynamics of polariton fluids: the TOPO configuration
- Resonantly driven polaritons
  Case of a long living quantum state put in motion
- Topological defects







### Laser cavity(I)







### Laser cavity(II)







## **Emitter (I)**

#### Quantum wells

- Artificial structures
- Layers of ~10 nm, with different band gap
- Quantum mechanical confinement effects







## **Emitter (II)**







### Excitón-Polaritón (I)





POLATOM-ESF-ISNP School; Maratea 01/09/2013



### Excitón-Polaritón (II)















### **Dispersion relations**

#### Along growth direction (confinement): $K_z = 2\pi/L$











#### Angle-Resonant Stimulated Polariton Amplifier P.G. Savvidis et al. Phys. Rev. Lett. 84, 1547 (2000)







### **Stimulated scattering**







#### **Atomic BECs**



http://jilawww.colorado.edu/bec/





#### Bose-Einstein condensation in alkali atoms

http://jilawww.colorado.edu/bec/



Rubidium: Science **269**, 198 (1995) JILA, Colorado



T Sodium: PRL **75**, 3969 (1995) MIT, Massachusetts



E.A. Cornell W. Ketterle C.E. Wieman





























### **BEC** of polaritons







### **BEC** of polaritons







Superfluid flow of Helium through the pores of a glass & Helium fountain



http://www.youtube.com







### Superfluidity: phenomenology



0000 SD



Superfluid

Quantum-mechanical particle in a circle: orbit =  $n \times \lambda_{dB}$ 

Appearance of singular regions: arrays of vortices



POLATOM-ESF-ISNP School; Maratea 01/09/2013



speed

#### Lattices of vortices in a BEC



W. Ketterle, MIT physics annual (2001)





### Superfluidity: phenomenology







### **Superfluidity: definition**





POLATOM-ESF-ISNP School: Maratea 01/09/2013



Our experiments: dynamics of the polariton condensed phase

### **Polaritons in the OPO regime:**

### A quantum state put in motion



Creation of polariton fluids with  $k \neq 0$ 



Interaction with defects




#### **Part I: Creation of polariton fluids with k \neq 0**

#### **GOAL:** make polaritons flow and study their excitations



Creating a polariton fluid at  $k \neq 0$ **CHALLENGES:** 

- Kicking an initial polariton momentum
- Limited polariton lifetime (2-10 ps)
- Laser stray light in actual experiments







Scattering of pump polariton ( $k_p$ ,  $E_p$ ) into a signal ( $k_s$ ,  $E_s$ ) and an idler ( $2k_p$ - $k_s$ ,  $2E_p$ - $E_s$ ) stimulated by final state occupation

Condition on the phase:  $2 arphi_{pump} = arphi_{signal} + arphi_{idler}$ 











#### How can we give a finite velocity to polariton condensates?









The **TOPO** configuration (triggered optical parametric oscillator)

- CW pump below spontaneous stimulation threshold
- **Pulsed** probe at a given k







The **TOPO** configuration (triggered optical parametric oscillator)

 CW pump below spontaneous stimulation threshold

- **Pulsed** probe at a given k
- Triggering of a signal state at  $k \neq 0$
- Population at signal state is fed by the CW pump due to final state stimulation even when the pulse laser is gone! (even for nanoseconds)







#### The **TOPO** configuration

(triggered optical parametric oscillator)

- CW pump below spontaneous stimulation threshold
- **Pulsed** probe at a given k
- Triggering of a signal state at  $k \neq 0$
- Population at signal state is fed by the CW pump due to final state stimulation even when the pulse laser is gone! (lasting for nanoseconds)









#### The **TOPO** configuration

(triggered optical parametric oscillator)

- CW pump below spontaneous stimulation threshold
- **Pulsed** probe at a given k
- Triggering of a signal state at  $k \neq 0$
- Population at signal state is fed by the CW pump due to final state stimulation even when the pulse laser is gone! (lasting for nanoseconds)

Creating a polariton fluid at k ≠ 0 CHALLENGES:

- Kicking an initial polariton momentum
- Limited polariton lifetime (2-10 ps)
- Laser stray light in actual experiments





#### The actual experiment: set-up



#### The actual experiment: set-up



#### **Experiment preparation**







#### **Incoherent polariton flow**







### **Coherent polariton flow**







#### **Coherent polariton flow**







Part II: Interaction with defects

# GOAL: study the excitations of the polariton fluids via interaction with defects







#### **Interaction with small defect**







#### Summary

- Polaritons allow for the dynamical study of their condensed state
- TOPO configuration:
  - $\checkmark$  creation of long lived polariton fluids with well defined k
- Linear dispersion created by interactions  $\succ$
- Observation of Čerenkov shock waves
- Friction-less motion when passing through a defect

Superfluidity







### **Dynamics of a polariton condensate** transistor switch







2. Sample and previous work

3. Experiments

#### 4. Theory and simulations





# On the polaritronic technology...

Bose-Einstein condensates as a tool for technological development

- $\checkmark$  Coherence  $\Psi_0(r,t)$
- ✓ Superfluid character
- ✓ Spin properties





#### Why use polaritons?

| species              | atomic gases | polaritons        |
|----------------------|--------------|-------------------|
| mass $m^*/m_0$       | $10^{4}$     | $10^{-5}$         |
| Bohr radius          | $10^{-1}$ Å  | $10^{2}$ Å        |
| $\lambda_T$ at $T_c$ | $10^{3}$ Å   | $10^4$ Å          |
| $T_c$                | $< 1 \mu K$  | $10 - 300 { m K}$ |





Daniele Bajoni,\* Elizaveta Semenova, Aristide Lemaître, Sophie Bouchoule, Esther Wertz, Pascale Senellart, Sylvain Barbay, Robert Kuszelewicz, and Jacqueline Bloch<sup>†</sup>

31 DECEMBER 2008

#### 300 µm Ti-Au Contact ✓ Optical gates 3 InGaAs

0.00-

-0.02

On the polaritronic technology...

a)

QWs

n-Mirror

Motivations

0. g)

NIVERSIDAD AUTONOMA





p-Mirror

i-GaAs cavity





#### Propagation and Amplification Dynamics of 1D Polariton Condensates

E. Wertz,<sup>1</sup> A. Amo,<sup>1</sup> D. D. Solnyshkov,<sup>2</sup> L. Ferrier,<sup>1</sup> T. C. H. Liew,<sup>3</sup> D. Sanvitto,<sup>4,5</sup> P. Senellart,<sup>1</sup> I. Sagnes,<sup>1</sup> A. Lemaître,<sup>1</sup> A. V. Kavokin,<sup>6,7</sup> G. Malpuech,<sup>2</sup> and J. Bloch<sup>1,\*</sup>







#### Motion of Spin Polariton Bullets in Semiconductor Microcavities

C. Adrados,<sup>1</sup> T. C. H. Liew,<sup>2</sup> A. Amo,<sup>1,3</sup> M. D. Martín,<sup>4</sup> D. Sanvitto,<sup>4,5</sup> C. Antón,<sup>4</sup> E. Giacobino,<sup>1</sup> A. Kavokin,<sup>6,7</sup> A. Bramati,<sup>1</sup> and L. Viña<sup>4</sup>







# On the polaritronic technology...



A. Bramati<sup>4</sup>, G. Gigli<sup>1,2,6</sup> & D. Sanvitto<sup>1,2</sup>







**Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities** 

T. C. H. Liew,<sup>1,2</sup> A. V. Kavokin,<sup>1,3</sup> and I. A. Shelykh<sup>2,4</sup>





# On the polaritronic technology...

## $\checkmark$ Circuits



arXiv.org > cond-mat > arXiv:1303.1649

20 um

Condensed Matter > Mesoscale and Nanoscale Physics

#### Giant phase modulation in a Mach-Zehnder exciton-polariton interferometer

C. Sturm, D. Tanese, H.S. Nguyen, H. Flayac, E. Gallopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, J. Bloch

(Submitted on 7 Mar 2013)





# On the polaritronic technology...

Reducing the dimensionality by patterning the microcavities

Wire microcavities

Very long polariton effective lifetimes

Propagation of condensates over macroscopic distances

Manipulation of condensates using **repulsive local** potentials by photogeneration of excitons



Superfluid character:

High lateral speed of propagation

Ballistic transport without energy loss





#### Spontaneous formation and optical manipulation of extended polariton condensates

E. Wertz<sup>1</sup>, L. Ferrier<sup>1</sup>, D. D. Solnyshkov<sup>2</sup>, R. Johne<sup>2</sup>, D. Sanvitto<sup>3</sup>, A. Lemaître<sup>1</sup>, I. Sagnes<sup>1</sup>, R. Grousson<sup>4</sup>, A. V. Kavokin<sup>5</sup>, P. Senellart<sup>1</sup>, G. Malpuech<sup>2</sup> and J. Bloch<sup>1\*</sup>



nature physics



POLATOM-ESF-ISNP School; Maratea 01/09/2013



Pump

### ✓ Optical amplifiers: E. Wertz et al., PRL 109, 216404 (2012)

Group velocity



POLATOM-ESF-ISNP School; Maratea 01/09/2013

JNIVERSIDAD AUTONOMA







# Experimental setup

UNIVERSIDAD AUTONOMA





# Experiments: pulsed exitation time-integrated







#### Experiments

UNIVERSIDAD AUTONOMA





# Simulations - Gross–Pitaevskii Equation



By... T.C.H. Liew, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore





Experiments – S only at P<sub>th</sub>






Experiments – S only at 10.5P<sub>th</sub>









INIVERSIDAD AUTONOM



Experiments  $-S @ 7.2P_{th} \& G @ 1.8P_{th}$ 







Experiments  $-S @ 7.2P_{th} \& G @ 9.0P_{th}$ 













## Energy decay dynamics: Simulations















emic



## Summary

- ✓ Full dynamics study for the **ON/OFF states** of an **all-optical polariton** condensate transistor switch, which is promising for high-speed inter-chip and intra-chip communication for core-based integrated circuits.
- ✓ The results are interpreted as a result of **polariton condensate** propagation and energy relaxation in a dynamic potential due to the exciton reservoir, which can be optically controlled.





## Thank you very much...



More information about this work... C. Antón, et al., Appl. Phys. Lett. 102, 105301 (2013). C. Antón, et al., Phys. Rev. B. 88, 035313 (2013).







**Bemi**¢













## ANR logic gate





