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Introduction: universality of OPEs
Lasers — polariton condensates — atomic condensates
Maxwell-Bloch equations for a laser

Ginsburg-Landau vs Swift-Hohenberg equations

Pattern formation and stability

Homogeneous OPE

e Inhomogeneous pumping

o Inhomogeneous energy (trapping)
e Vortex lattices

@ Pattern formation in nonlinear optics

2/28



Acknowledgements

Guido Franchetti Magnus Borgh Jonathan Keeling
DAMTP, Cambridge Southampton University St Andrews University

N.G.Berloff and J.Keeling " Universality in modelling non-equilibrium
polariton condensates”, chapter in the book "Quantum fluids:hot topics
and new trends” ed. A. Bramati and M. Modugno, Springer-Verlag (2012).

M.Borgh, G.Franchetti, J.Keeling and N.G. Berloff in preparation PRA,
(2012)

3/28



Universality of OPEs

Order Parameter Equations (OPEs) describe:
e relaxation toward an equilibrium configuration 0;1) = —['0yF;

@ phase evolution in a conservative system (Hamiltonian dynamics);

@ mixture of the two.

The structure of the energy functional F is determined by the symmetries
of order parameter space, e.g. Ginsburg-Landau energy functional:
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Universality: vortices

Hydrodynamic interpretation of OPEs: vortices

Lagoudakis et al. Nature Phys (2008); Nowik-Boltyk et al, Nature Com. (2012)
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Universality: dark Soliton and "snake" instability

In nonlinear optics

In atomic BECs
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Lasers: Maxwell-Bloch equations

Laser dynamics is described by coupling Maxwell equations with
Shrodinger equations for N atoms confined in the cavity.

MBE—E in cavity modes coupled to collective variables that describe the
polarisation and population of the gain medium.

Lasers are classified depending on the relative order of the loss rates for
the electric field, compared to the decay rates of the gain medium
polarisation and population.

Two homogeneous solutions: @) = 0 and 1 = const

Instabilities
population nonlasing lasing
Fast cSH cSH + KS
Slow cSH + population mean flow cSH + KS + mean flow

7/28



Polariton condensates
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Emission follows the bare photon dispersion — regular lasing;

Emission follows the lower polariton dispersion — polariton condensation;
Small pumping and losses — equilibrium Bose-Einstein condensates.
Unified approach to describe the transition from normal lasers to
the equilibrium BECs via polariton condensates!
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Polariton condensates
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Emission follows the bare photon dispersion — regular lasing;

Emission follows the lower polariton dispersion — polariton condensation;
Small pumping and losses — equilibrium Bose-Einstein condensates.
Unified approach to describe the transition from normal lasers to
the equilibrium BECs via polariton condensates!

Photon laser: (1) resonator for the electromagnetic field; (2) gain
medium; (3) excitation mechanism for the gain medium.

Polariton condensates: stimulated scattering within the set of polariton
modes.

Idea: Given the universality of OPEs, write a single OPE which captures
these different regimes by varying appropriate parameters. 8 /28



Maxwell-Bloch equations for a laser

ug%i +(1+iBg)Pg = EG,
TJ_aaalz +(1+1ihA;)Pa = EA,
Tgaa_f =Gy — G — %(E*Pg"" EPg),

g—f Ay A g(E*Pa + EPY),

E is the envelope of the electric field,

G and A are the population differences for gain and absorption media,

Pg and P, are the envelopes of polarisation for gain and absorbtion media;
Gp and Ag are the stationary values of the population difference;

D= TLaTaug/(TLnguz,) is the relative saturability of gain and loss media;
Tlag and 7, are the relaxation times for atomic polarisations and
population differences scaled by the cavity relaxation time. 9/28
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Fast reservoir dephasing limit 7,7, < 1

g’f iV2E = Py — P, — (L+iA)E,
0Py
TJ_ga— —+ (1+ IA )Pg = EG,
P,
Tlaps + (1 +i85)Ps = EA,
G - .
Te . = Go— G — 5(E"Pg + EPy),

oA D,_, .
o7 = A0~ A~ Z(E"Pa+ EP),

Ta
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Fast reservoir dephasing limit 7,7, < 1

(1+iAg)P, = EG,

(1+iA,)P, = EA,

EG
P,=—"
B 1+in, ’
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Fast reservoir dephasing limit 7,7, < 1

oP, .
TJ_g—g + (14 iAg)Pg = EG,

ot
qa% + (14 iA,)P, = EA,
EG (EG):

ETTxin, FEAFing)?
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Fast reservoir dephasing limit 7,7, < 1

OE
5 V2E = Py — P, — (1 +iAC)E,

__E6 (EG):
ETTxin, FEAAiDg)?
(1+ in)% — (V2= Ag)e =[(1—iAy)g — (1 — iAz)a— 1]e,

where 1) = =27, .8, /(1 + AZ) + 271 ,aA, /(1 + AZ) and rescaled

e=E/(1+ A2) etc. 1028



Fast reservoir dephasing limit 7,7, < 1

G 1 . *
Te 5, = Go— G — S(E"Pg + EPy),
Tage = Ao — A= —(E"Py+ EP;),
__E6 (EG):
ETTxin, FEAAiDg)?
(1+ in)% — (V2= Ag)e =[(1—iAy)g — (1 — iAz)a— 1]e,

where 1) = =27, .8, /(1 + AZ) + 271 ,aA, /(1 + AZ) and rescaled

e=E/(1+ A2) etc. 1028



Fast reservoir population relaxation 75,7, < 1

(1+ in)% — (V2= A)e=[(1-iDg)g — (1 —iAs)a—1]e
og
Teg, =& —(1+ lel*)e,

Oa
T, =30~ (1+ d|e|?)a.
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Fast reservoir population relaxation 75,7, < 1

0
(1+ in)a—‘: (V2 Ade=[(1—iAg)g — (1 —iA)a—1]e

g0 — (1 +ef)g,
a0 — (1+ d|e]?)a.

Giving

g —go a— —a()

1+ le]?’ 1+ dlef?*
Close to emission threshold |e|? < 0, expanding in small |e| gives the

complex Ginsburg-Landau equation

0
(i =m)5; = —Ve+ Ve+ UlePe+ ila— Blefle,
where we let « = go —ap — 1, 8 = go — a0, U = dagA,; — golg ,

V = gOAg — aoAa.

g
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The cGL equation — no mode selection!

Perturbation growth exponent

N

vs perturbation wavenumber 10

squares—cGLE 5
circles — cSHE 0 l 2
. ankig

triangles — MBE =

The cGL equation does not take into account the selection of transverse

modes.
The lasers emit particular transverse modes that depend on the length of

the resonator.
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The cGL equation — no mode selection!

Perturbation growth exponent

N

vs perturbation wavenumber 10

squares—cGLE 5
circles — cSHE 0 l 2
. ankig

triangles — MBE =

The cGL equation does not take into account the selection of transverse
modes.

The lasers emit particular transverse modes that depend on the length of
the resonator.

Heuristically,

e
0

Lowest degree of approximation
(a)

A= —§(k* — k2)? +i(k* — k2),

where «a is a control parameter that takes Re(\)
into the positive range of values.

(b) o
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Multi-scale analysis of the Maxwell-Bloch equations

%—f— (V2 — A)E =Py — P, — E,

+ 4 equations on Py, P,, G, A
Following ideas of Lega et al PRL 1994
Assume V2 — A, is small (= ¢(V? — A.)) and introduce two small time
scales: Ty = et, To» = €2t, so that 9; = eor, + 6287-2.
Steps:
(1) Write functions as asymptotic expansions in €. E =) €"E, etc.
Equations have form LE, = g,.
(2) Fredholm Alternative: require g, to be orthogonal to the solutions of
the adjoint homogeneous problem L£*E, = 0.
(3) Finally, at a given order, obtain a closed equation for the evolution of
one single variable — order parameter (¢ = E)
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Multi-scale analysis of the Maxwell-Bloch equations

At the leading order (E, Pg, P5, G, A) = (0,0,0, Go, Ag).

At O(e), (El, Pgla Pa1, Gl,Al) = (1/), Go?ﬁ/(l + iAg), Ao@[)/(l + iAa), 0, 0),
Go and Ay are linked via 1 = Go/(1 + iAg) — Ao/(1+ iA,).

At the threshold for laser emission Gir = As(1 + Aé)/(Aa - Ag).
Near-threshold assumption Gy = Ggit + e2lg and Ay = Acrit + €215.

At O(€?):

O
a—nzl(v2—Ae)w+Pg2_Pa2_E27
OP, .
Tlg 8#11 + (1 + /Ag)Pg2 = E2G07
0P, .
uaa—Tll +(1+i0,)Pa = ExA,
]' * *
0=—-Gx— §(¢Pg1 + 9" Pg1),
D * *
0=—-A— §(¢P31 + ¢ Pa1).
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O(e?)

Compatibility condition

. 9 _
(14 GoT1g — AoHa)iw =i(V? = Ae)y,
0T

and expressions for P2, Ps2, G and A

) 9
Pgo = —UgGoa;l.} Pa = HaAoai

G GolvP _ ADPP
2T 1A TP 14 A2

where we let E; = 0 and denoted 71, |, = Tig 12/(1 +iDg2),
Go = Go/(1+ilg) and Ag = Ag/(1+ iA,).
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0(e3)

X
a7,

OPy,1  OPyo .
TJ_g( 67%2 + a_ﬁl > —i—(].—i—lAg)ng, = E3G0+¢(G2—|—/g),

(8/331 0P
Tlg

= Pg3 — Py3 — E3,

aT, " T,

26, _
€91y
0A> D . .
Taa_-,-l =—Az — E(wpaz + Pa2)-
Compatibility condition

) + (14 iAs)Px3 = E3Ag + (A2 + 1),

1 * *
_G3_§(¢Pg2+¢ g2)7

00 - 0P 0P
oT, ' foT  om

/ / Go AoD
- g2 y- . IR
1+iAg 1+iA, 1+A; 1+Aj3
16 /28
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Putting it all together...

Collect the derivatives as 9; = €dT, + €207,

absorb € into ¥ and V2 — A, and replace 62/g (€21,) with Gy — Gerit
(Ao — Acrit) as expected.

The result is the cSH equation

oY

u+aﬁg—%aga-=/mﬂ—%m
~2 ~ =2 7
- ST (2 g2y
(1 + GOTJ_g — AOTJ_a)2
Go AD \| o
v v (g~ TP

where v = (Go — Gcrit)/(]- -+ iAg) — (Ao — Acrit)/(]- + iAa).

We can simplify the coefficients by considering a limit Ag , < 71, , < 1,
neglecting O(A;a) and O(Tig@Ag,a) terms and keeping only the higher
order terms for real and imaginary parts of the coefficients.
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The complext Swift-Hohenberg equation

i

(L4 i) Gy = i(V2 = D)o = 5(V2 = AP0+ (= VY = (B+ U)o o

Energy relaxation = —2GoAgT| g + 2A0As7 1 2,
Coefficient of superdiffusion § = sz_g Go — Tf_aAo,
Effective pumping o = Gg — Ag — 1,

Effective repulsive potential V = GoAg — AgA,,
Cubic damping 8 = Gy — AgD,
Interaction potential U = AgDA, — GoA4.

Slow population evolution: 7|z ,/7g. < 1

(1+ in)g—qf = (V2= D) — (V2= D)’ + (G — A— 1)
— i(AgG — ALA)Y,
oG
g5, = Go— (1+[WP)6,
OA
Tae = Ao — (1+ D[Y)A 18 /28



Inhomogeneous pumping

(+inP)Gy = (P == PO ) o+ (72 = V(P) ~ [P0

+20AV2) — 5V, .

We take 6§ = 0.1, A = —0.1
cGLE cSHE _

E
=1
Distance

Time
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Density

Distance
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Stability analysis

Neglect quantum pressure terms, superdiffusion and re-scale:
Oip+V - (pV6) = (& = Bp+ 20i0ed — 25(Y0)%) p,
20:h + (V)% + r2 4+ p = §(2A.V? — V*)p.

Without dissipative terms linearise using p — p + he ™t ¢ — ¢ + pe~ /@t
to get [Stringary PRL 1998] normal modes with frequencies

wns = \/2n% +2(s + 1)n + s and density profiles given by hypergeometric
functions h(r,0) o 2F1(—n,n+s+1;s+1,r?)e™r; here n is a radial
quantum number, and s is an angular quantum number.

The first order correction

W _ i ON2 (5 n (07 =
Whe = 2N/277rdr[(hns) (oz i (25—}—77)#)

o (x 1
+5nY (Ae - §v2> V2h)

which at large s Wil — iBéa)(28 +37) >0
Instability!
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Vortex Lattices

cGLE cGLE cSHE
with n =0 with n = 0.2 0=02A.=-02

Red dashed lines — analytical solutions
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@ Connection between lasers, polariton condensates and equilibrium
condensates from the common framework based on the MBE.

@ The complex Swift-Hohenberg equation should be applicable to
polariton condensates.

@ The pattern formation in the framework of the cSH equations have
been well-studied for lasers.

@ Some of these phenomena may be achieved in polariton condensates.

@ The stronger nonlinearities and different external potentials
(engineered or due to disorder) may lead to novel properties of the
system exhibiting effects not seen in normal lasers.

@ Microscopic modelling: quantum kinetic Boltzmann equation to
model non-condensed particles.
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Laser Hydrodynamics

Zero detuning

80 — 4 iV 6V — [yl

Hydrodynamical form
Madelung transformation ¢ = \/pexp(i®), v=Vo, x— V2x

0
—p—i-V-(pv) = 2p—2p°

ot ’
ov _ & w4 V(\/_p)
a—i—(v‘V)v = —§Vv+V-(2\/ﬁ)

Evolution of "photon fluid”. No "usual” compressibility unless a
focusing-defocusing Kerr material is present in the laser resonator.
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Laser Hydrodynamics

Zero detuning

OO — 41V — 594y — (1 + iUo)

Hydrodynamical form
Madelung transformation ¢ = \/pexp(i®), v=Vo, x— V2x

0
—p—i-V-(pv) = 2p—2p°

ot ’
ov _ & w4 V(\/_p)
a—i—(v‘V)v = —§Vv+V-(2\/ﬁ)

Evolution of "photon fluid”. No "usual” compressibility unless a
focusing-defocusing Kerr material is present in the laser resonator.
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Laser Hydrodynamics

Zero detuning

oY

Tp = VIV =6V — [YPP(1 + i)

Hydrodynamical form
Madelung transformation ¢ = \/pexp(i®), v=Vo, x— V2x

0
—p—i-V-(pv) = 2p—2p°

ot ;
Ov _ 8 4 V(\/_p) Vp
8t+(v Viv = —EV v—i—V-( 25 >_p

Evolution of "photon fluid”. No "usual” compressibility unless a
focusing-defocusing Kerr material is present in the laser resonator.
Internal pressure p = Ugp?/2.

"Normal” for Uy > 0 and "anomalous” for Uy < 0.
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Optical Vortices

In cylindrical coordinates (r, 0, z):
P(r,0) = R(r) exp[imf + i®(r)]
m is the "topological charge”, "winding number”, "vortex circulation” etc.

2
i /4

3n/4

Sn/d In/4
3m/2

Constant ® radiating vortex
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Strong diffraction § < 1

O ot iV — 5 — [y
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Strong diffraction § < 1

o o2 2
S =+ iV — [y

Kink (black soliton) anzatz )(x, t) = tanh(x/xg) exp[—iwt + iP(x)] to
get the half-width xp, the frequency w and the kink "radiation factor” «:
o, = (a/xp) tanh(x/xp).
Vortices radiate. "Shocks” between vortices.

Chaotic vortex motion = " defect
modulated turbulence”

r8 = 3/2 (diffraction/pumping)




Broad-aperture photorefractive oscillator
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Strong diffusion limit § < 1

0
X =+ iV 5 — [Py
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Strong diffusion limit § < 1

o sh 12
=%+ 5V — [P

Approximate solution (variational anzatz) ¢(x, t) = tanh(x/xp).

0 = ~67 (50", F= [ (-4 Il + 5+ o) o
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Strong diffusion limit § < 1

0
BV — i oV — P

Approximate solutlon (var|at|onal anzatz) i(x, t) = tanh(x/xp).

0 = ~67 (50", F= [ (-4 Il + 5+ o) o

160 + 5x¢
F0) = 508

The vortex core parameter r3 = /24/5§ (diffusion//pumping)

min F : xg = (24/5)0

'

A E
Lo
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